Last updated 5/7/23 by Emily Hsi, created by Matthew Tang and Christianna Xu
Asymptotics Runtime
$\Theta$: there exists positive constants k1 and k2 such that $k_1f_1(N)\leq R(N)\leq k_2f_2(N)$
Important sums:Sum of first $n$ natural numbers = $\frac{n(n+1)}{2} \implies \Theta(n^2)$
Sum of first $n$ powers of 2 = $2Q -1 \implies \Theta(n)$
$\Sigma_{i=0}^{N-1} 2^i \implies \Theta(2^n)$
$1 + ... (\frac{n}{2})^2 + n^2 \implies \Theta(n^2)$
$1 + 2 + 4 + 8 + ... N^2 \implies \Theta(n^2)$