# 一元 n 次方程式 ## 一次 $$ \begin{align} ax+b&=0\\ x&=\frac{-b}{a}\\ \end{align} $$ ## 二次 $$ \begin{align} ax^2+bx+c&=0\\ x^2+\frac{b}{a}x+\frac{c}{a}&=0\\ (x+\frac{b}{2a})^2&=\frac{b^2}{4a^2}-\frac{c}{a}\\ x+\frac{b}{2a}&=\pm\sqrt{\frac{b^2-4ac}{4a^2}}\\ x&=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\ \end{align} $$ ## 三次 $$ \begin{align} ax^3+bx^2+cx+d&=0\\ x^3+mx^2+nx+k&=0, m=\frac{b}{a}, n=\frac{c}{a}, k=\frac{d}{a}\\ (x+\frac{m}{3})^3&=(\frac{m^2}{3}-n)(x+\frac{m}{3})+\frac{mn}{3}-\frac{2m^3}{27}-k\\ y^3&=py+q\\ (a+b)^3&=p(a+b)+q\\ a^3+b^3+3ab(a+b)&=p(a+b)+q\\ &\left\{ \begin{array}{l} a^3+b^3=q\\ 3ab=p\\ \end{array} \right. \\ (a^3-b^3)^2&=q^2-\frac{2p^3}{27}\\ a^3-b^3&=\pm\sqrt{\Delta}\\ x+\frac{m}{3}=a+b&=\sqrt[3]{\frac{q+\sqrt{\Delta}}{2}}+\sqrt[3]{\frac{q-\sqrt{\Delta}}{2}}\\ \end{align} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up