# $$ \sum_{i=1}^{89}{sin(i°)}=\frac{\sqrt{90}}{2^{89}}$$ ###### tags: `三角` `複數` ## 解一 ![](https://i.imgur.com/ZpmUbAT.jpg) ## 解二 $$ \begin{align} &sin(x)sin(60°-x)sin(60°+x)\\ =& \frac{1}{2}(cos(60°)+cos(2x-60°))sin(60°+x)\\ =& \frac{1}{2}(\frac{1}{2}sin(60°+x)+sin(60°+x)cos(2x-60°))\\ =& \frac{1}{4}(sin(60°+x)+sin(3x)+sin(120°-x))\\ =& \frac{1}{4}sin(3x) \end{align} $$ $$ \begin{align} &\sum_{i=1}^{89}{sin(i°)}\\ =&\sum_{i=1}^{29}\left(\frac{1}{4}sin(3i°)\right)sin(30°)sin(60°)\\ =&\frac{\sqrt{3}}{2^{60}}\sum_{i=1}^{29}\left(sin(3i°)\right)\\ =&\frac{\sqrt{3}}{2^{60}}\sum_{i=1}^{9}\left(\frac{1}{4}sin(9i°)\right)sin(30°)sin(60°)\\ =&\frac{\sqrt{9}}{2^{80}}\sum_{i=1}^{9}\left(sin(9i°)\right)\\ =&\frac{\sqrt{9}}{2^{84}}\sum_{i=1}^{4}\left(sin(18i°)\right)sin(45°)\\ =&\frac{\sqrt{18}}{2^{87}}\left(sin(36°)+sin(72°)\right)\\ \end{align} $$