###### tags: `physics solution` # measurement ## Problem 1-6 1. Earth is approximately a sphere of radius $6.37\times 10^6m$. what are (a) its circumference in kilometers, (b) its surface area in square kilometers,and (c) its volume in cubic kilometers? > formula : $circumference=2r\pi、sureface\ area=4r^2\pi、volume=\frac{4}{3}r^3\pi$ > Ans:(a)$4.002\times 10^4km$、(b)$5.099\times 10^8km^2$、(c)$1.083\times 10^{12}$ 2. A $gry$ is an old English measure for length, defined as 1/10 of a $line$, where $line$ is another English measure for length, defined as 1/12 inch. A common measure for length in the publishing business is a $point$, defined as 1/72 inch. What is an area of 0.75 $gry^2$ in $points\ squared$ ($points^2$) > $1\ gry=1/10\ line=1/120\ inch=3/5\ point\rightarrow 0.75\ gry^2=0.75*(3/5)^2points^2=0.27points^2$ > Ans:$0.27points^2$ 3. The micrometer($1\mu m$) is often called the micron. (a)How many mictons make up $1.0km$? (b)What fraction of a centimeter equals $1.0\mu m$? (c)How many microns are in 1.0 yd ($0.9144m$)? > Ans:(a)$1.0\times 10^9$、(b)$1.0\times 10^{-4}$、(c)$9.144\times 10^5$ 4. Spacing in this book was generally done in units of points and picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was misplaced in the page proofs by $0.70cm$, what was the misplacement in (a)picas and (b)points? > $1\ inch=2.54\ cm\rightarrow1cm=1/2.54\ inch\rightarrow 0.7cm =0.7/2.54\times 6picas\simeq1.653picas$ then $0.7cm=0.7/2.54\times 72points\simeq19.842points$ > Ans:(a)$1.653picas$、(b)$19.842points$ 5. Horses are to race over a certain English meadow for a distance of $4.0$ furlong. What is the race distance in (a)rods and (b)chains?($1\ furlong=201.168m;1\ rod =5.0292m$, and $1\ chain = 20.117m$) > $1 furlong : 1 rod : 1 chain=201.168:5.0292:20.117\rightarrow 4.0furlong=160rod=40chain$ > Ans:(a)$160rod$、(b)$40chain$ 6. You can easily convert common unit and measures electronically. but you still should be able to use a conversion table, such as those in Appendix D. Table 1-6 is part of a conversion table for a system of volume measure once common in Spain; a volume of $1fanega$ is equivalent to $55.501dm^3$(cubic decimeters). To complete the table, what numbers(to three significant figures) should be enterd in (a) the cahiz column, (b)the fanega column, ( c )the cuartilla column, and (d)the almude column, starting with the top blank? Express $7.0$ almudes in (e)medios, (f)cahizes, and (g)cubic centimeters($cm^3$) ![](https://i.imgur.com/U3V0fU3.jpg) > Ans: | table 1-6 | cahiz | fenega | cuartilla | almude | medio | | ------------ | ----- | ------ | --------- | ------ | ----- | | 1 cahiz= | 1 | 12 | 48 | 144 | 288 | | 1 fanega= | 1/12 | 1 | 4 | 12 | 24 | | 1 cuartilla= | 1/48 | 1/4 | 1 | 3 | 6 | | 1 almude= | 1/144 | 1/12 | 1/3 | 1 | 2 | | 1 medio= | 1/288 | 1/24 | 1/6 | 1/2 | 1 | > (e)$14.0medio$、(f)$7/144cahizes$、(g)$32.376\times 10^3 cm^3$ ## Problem 7-17 ![](https://i.imgur.com/rlj7lAq.png) 7. Ans: > $1 acre-foot=1acre \times 1foot \\ \rightarrow 26km^2 \times 2.0in=26\times 247.105acre\times 2.0 \times 1/12ft=1070.788acre-foot$ 8. Ans: > $212s=258w$、$180s=156z$,$\rightarrow 50.0 smoots=60.849w=43.333z$ 9. Ans: > $V=area\times Length=\frac{1}{2}(2\times 10^6m)^2\pi\times 3\times 10^3m=6\times 10^{21}\pi\ cm^2\simeq1.9\times 10^{22}$ 10. Ans: > $360^\circ/24=15^\circ$ 11. Ans: > (a)$1day=1day\rightarrow 1French\ decimal\ week(10fdw)=10day\rightarrow 1fdw=\frac{10}{7}sw$ (b)$86400s=100000fds\rightarrow 1fds=0.864s$ Thus, (a)$\frac{10}{7}$(b)$0.864$ 12. Ans: > $3.7m/14day=3700ms/14\times 86400\times 1000=3.059\times 10^{-6}$ 13. Ans: > $200A(s)=165B(s)、175B(s)=50C(s)\rightarrow 600A(s)=495B(s)-(a)=141.429C(s)-(b)$ $312+88A(s)=125+x,x=88\times 165/200=72.6\rightarrow 125+72.6=197.6B(s)-(c)$ $15C(s)=92-77C(s)=25-269.5B(s)=-244.5B(s)-(d)$ 14. Ans: > $10^{-6} century=10^{-6}\times (100\times 365+24)24\times 60=52.595min-(a)$ $\frac{52.595-50}{52.595}\times 100\%=4.934\%-(b)$ 15. Ans: > $2\times 7\times 86400\times 10^3s=1.2096\times 10^{12}\mu s$ 16. Ans: > $(a)8\times 86400\times 10^3/1.57780644887275=438,076,546.394$ $(b)1.57780644887275\times 10^6=1577806.44887275ms$ $(c)\pm 3\times 10^{-17}s$ 17. Ans: > CDABE important criterion is the consistency of the daily variation, not its magnitude ## Problem 18-31 ![](https://i.imgur.com/TCmeZfE.jpg) 18. Ans: > $1.0ms\times 30 =30ms$ 19. Ans: > ![](https://i.imgur.com/dm6LPM1.jpg =30%x) > $\frac{r}{r+h}=cos(\theta), \theta=360^\circ\times\frac{11.1}{86400}\rightarrow \frac{r}{r+h}=0.999999674\rightarrow r=0.999999674h/0.000000326=5.215\times 10^6 m$ 20. Ans: > (a)$193\times 3.785=730.505L=730.505\times 1000cm^3=0.7305 million\ cm^3$ > (b)$0.7305kL\times 1000kg/m^3=730.505kg=730505g\rightarrow 730505/1.5=487,003.333min$ 21. ans: > $5.98\times 10^{24}/40\times 1.66\times 10^{-27}=9.006\times 10^{49}$ 22. ans: > (a)$V=area\times l\rightarrow \frac{29.34}{19.32\times 1.0\times 10^{-4}}\simeq 15,186.335cm^2$ > (b)$V=area\times l\rightarrow\frac{29.34}{19.32\times (2.5\times 10^{-4})^2\pi}\simeq 7,734,343.643cm$ 23. ans: > (a)$1g/cm^3=0.001kg/(0.01)^3m=1000kg/m^3$ > (b)$5700\times 1000/10\times 60\times 60\simeq158.333kg/s$ 24. ans: > $6/(1.2\times 10^{-4})^2\pi\times\frac{4}{3}(6\times 10^{-5})^3\pi\times 2600=0.312kg$ 25. ans: > $V=area\times l\rightarrow 2500\times 800\times 2 /400\times 400=25\rightarrow 25\times 4.0\times 1900=1.9\times 10^5kg$ 26. ans: > $50\thicksim 500/cm^3\rightarrow$ > (a)$10^3\times 10^3\times\pi\times 3\times 10^3=3\pi\times 10^9m^3=3\pi\times 10^{15}cm^3 \\ \rightarrow(lower):4.712\times 10^{17} water\ drops;(hight):4.712\times 10^{18} water\ drops$ > (b)、$(c)$ $4.712\times 10^{17}\times\frac{4}{3}(10^{-5})^3\pi=1.974\times 10^3m^3=1.974\times 10^6kg=1.974\times 10^6 L$ 27. ans: > (a)$9.27\times 10^{-26}\times 1000/7.87=1.178\times 10^{-23}cm^3$ > (b)$V=\frac{4}{3}r^3\pi=1.178\times 10^{-23}\rightarrow r=1.411\times 10^{-8}\rightarrow d=2r=2.822\times 10^{-8}cm$ 28. ans: > ??? 29. ans: > $0.3799\times 10\times 10\times 16\times 100\times 28.9=1756.657kg$ 30. ans: > (a)$\frac{d}{dt} 5.0t^{0.8}-3.00t+20.00=4t^{-0.2}-3=0\rightarrow t=(\frac{4}{3})^5=4.213$ > (b)$t=(\frac{4}{3})^5\rightarrow 5.0t^{0.8}-3.00t+20.00=5\times(\frac{4}{3})^4-3\times 4.213+20.00=23.163g$ > $(c)(d)$ $4t^{\frac{-1}{5}}-3.00\rightarrow \\ t=3,v=0.211g/s=1.266\times 10^{-3}kg/min ; t=5,v=-6.05\times 10^{-3}kg/min$ 31. ans: > $14\times 17\times0.25\times 0.02/(5\times 10^{-2})=23.8g/s=1.428kg/min$