# Test Latex Logika $$ \documentclass{article} \newcommand{\logicarg}[2]{% \logicarg{<premise>}{<conclusion>} \begin{tabular}[t]{@{}l@{}} #1 \\ \hline #2 \end{tabular}% } \begin{document} \begin{enumerate} \item \logicarg {If you are eating soup then I am happy. \\ You are eating soup} {I am happy} \item \logicarg {If it is Wednesday then you aren't taking a quiz. \\ It is not Wednesday.} {You are taking a quiz.} \item \logicarg {Either you love logic or you hate it. \\ You don't hate logic.} {You love logic.} \end{enumerate} \end{document} $$ $$ \begin{tabular}{ l r } p \rightarrow q \\ p \\[5pt] \hline \therefore \ q \end{tabular} $$ $$ \begin{table}[t] \hline &Treatment A&Treatment B\\ \hline \end{table} $$ $$ \begin{table}[] \begin{tabular}{ll} a & b \\ c & d \\ \end{tabular} \end{table} $$ $$ \begin{center} \begin{tabular}{|l|l|l|l|} \hline Johnson Family & Transformation & Parameter Conditions & X Condition \\ \hline $S_B$ & $Z=\gamma + \eta ln(\frac {X - \epsilon} {\lambda + \epsilon - X})$ & $\eta, \lambda >0, -\infty < \gamma, \epsilon < \infty$ & $\epsilon < X < \epsilon + \lambda$ \\ \hline $S_L$ & $Z=\gamma + \eta ln(X - \epsilon)$ & $\eta >0, -\infty < \gamma, \epsilon < \infty$ & $X > \epsilon$ \\ \hline $S_U$ & $Z=\gamma + \eta \sinh^{-1}(\frac {X - \epsilon} {\lambda})$ & $\eta, \lambda >0, -\infty < \gamma, \epsilon < \infty$ & $-\infty < X < \infty$ \\ \hline \end{tabular} \end{center} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up