# 銀河円盤による重力 宮本永井モデルのポテンシャル ${\displaystyle \Phi _{\mathrm {DISK} }(R,z)=-{\frac {GM_{\mathrm {d} }}{\sqrt {R^{2}+\left(a_{\mathrm {d} }+{\sqrt {z^{2}+b_{\mathrm {d} }^{2}}}\right)^{2}}}}}$ $\frac{\partial \Phi_{DISK} (R,z)}{\partial R}=\frac{GM_d R}{\left(R^{2}+\left(a_{\mathrm {d} }+{\sqrt {z^{2}+b_{\mathrm {d} }^{2}}}\right)^{2}\right)^{3/2}}$ $\frac{\partial \Phi_{DISK} (R,z)}{\partial z}=\frac{GM_d R \left(a_{\mathrm {d} }+{\sqrt {z^{2}+b_{\mathrm {d} }^{2}}}\right)z}{\sqrt {z^{2}+b_{\mathrm {d}}^2}\left(R^{2}+\left(a_{\mathrm {d} }+{\sqrt {z^{2}+b_{\mathrm {d} }^{2}}}\right)^{2}\right)^{3/2}}$ z方向の重力 $g_z=-\frac{\partial \Phi_{DISK} (R,z)}{\partial z}$ 松井さんの銀河モデル $M_d=4.0\times 10^{10}M_{\odot}, a_d=3.5kpc, b_d=0.4kpc$ を代入すると下図のようになる。 左:z方向スケール長($b_d$)まで 右:1kpcまで スケール長まではほぼzに比例とみなせる <img src="https://i.imgur.com/z9NqIZL.png" width="50%"><img src="https://i.imgur.com/72xvmpu.png" width="50%">
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up