# 流体運動方程式 テンソル形式の導出 Krumholtz(6.2)の導出(磁場の項は考えない) 連続の式のテンソル形式 \begin{equation} \frac{\partial \rho}{\partial t}=-\nabla \cdot (\rho \boldsymbol{v})=-\frac{\partial}{\partial x_k}(\rho v_k) \tag{1} \end{equation} 運動方程式 \begin{equation} \frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}\cdot \nabla)\boldsymbol{v}=-\frac{1}{\rho}\nabla p-\nabla \phi \tag{2} \end{equation} (2)に$\rho$をかける \begin{equation} \rho\frac{\partial \boldsymbol{v}}{\partial t}+\rho(\boldsymbol{v}\cdot \nabla)\boldsymbol{v}=-\nabla p-\rho\nabla \phi \tag{3} \end{equation} ここで \begin{equation} \frac{\partial}{\partial t}(\rho \boldsymbol{v})=\boldsymbol{v}\frac{\partial \rho}{\partial t}+\rho\frac{\partial \boldsymbol{v}}{\partial t} \end{equation} より(3)の左辺第1項は \begin{equation} \rho\frac{\partial \boldsymbol{v}}{\partial t}=\frac{\partial}{\partial t}(\rho \boldsymbol{v})-\boldsymbol{v}\frac{\partial \rho}{\partial t}\tag{4} \end{equation} また(3)の左辺第2項をテンソル形式にすると \begin{equation} \rho(\boldsymbol{v}\cdot \nabla)\boldsymbol{v}=\rho(v_i\frac{\partial (v_j\boldsymbol{e_j})}{\partial x_i})=\rho v_i\frac{\partial v_j}{\partial x_i}\boldsymbol{e_j}\tag{5} \end{equation} ここで \begin{equation} \rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}=\rho v_i\frac{\partial v_j}{\partial x_i}\boldsymbol{e_j}+\rho v_j\frac{\partial v_i}{\partial x_i}\boldsymbol{e_j} \end{equation} より(5)式は \begin{equation} \rho(\boldsymbol{v}\cdot \nabla)\boldsymbol{v}=\rho v_i\frac{\partial v_j}{\partial x_i}\boldsymbol{e_j}=\rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}-\rho v_j\frac{\partial v_i}{\partial x_i}\boldsymbol{e_j}\tag{6} \end{equation} (4)(6)を(3)の左辺に代入すると \begin{equation} \frac{\partial}{\partial t}(\rho \boldsymbol{v})-\boldsymbol{v}\frac{\partial \rho}{\partial t}+\rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}-\rho v_j\frac{\partial v_i}{\partial x_i}\boldsymbol{e_j}=-\nabla p-\rho\nabla \phi\tag{7} \end{equation} \begin{equation} \frac{\partial}{\partial t}(\rho \boldsymbol{v})=\boldsymbol{v}\frac{\partial \rho}{\partial t}-\rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}+\rho v_j\frac{\partial v_i}{\partial x_i}\boldsymbol{e_j}-\nabla p-\rho\nabla \phi\\ =-\rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}+ v_i(\frac{\partial \rho}{\partial t}+\rho\frac{\partial v_i}{\partial x_i})\boldsymbol{e_j}-\nabla p-\rho\nabla \phi\tag{8} \end{equation} ここで(1)より(8)の右辺第2項は0になるので \begin{equation} \frac{\partial}{\partial t}(\rho \boldsymbol{v})==-\rho\frac{\partial (v_iv_j\boldsymbol{e_j})}{\partial x_i}-\nabla p-\rho\nabla \phi\tag{9} \end{equation} $\rho$の空間的な変化は小さいと仮定すれば \begin{equation} \frac{\partial}{\partial t}(\rho \boldsymbol{v})=-\nabla\cdot(\rho \boldsymbol{v}\boldsymbol{v})-\nabla p-\rho\nabla \phi\tag{9} \end{equation}
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up