# NLP2 ## Partie 3 ### Question a We want $c ≃ v_j$ for $j \in [1, n]$, as $\{v_1, \dots, v_n\}$ is a random set of vectors: $$ (E) : \alpha_i = \begin{cases} 1 & \text{if $i = j$} \\ 0 & \text{else} \end{cases} $$ The $\alpha_i$ are define by: $$ \alpha_i = \frac{\exp(k_i^t \cdot q)}{\sum_{j=1}^{n} \exp(k_j^t \cdot q)} $$ So $(E)$ is not solvable, but we can use the limits to look for a close behavior. - if $i = j$ then we want $\exp(k_j^t \cdot q) \to + \infty$, so $k_j^t \cdot q \to + \infty$ - if $i \neq j$ then we want $\exp(k_i^t \cdot q) \to + 0$, so $k_i^t \cdot q \to - \infty$ ### Question b Suppose $\{k_1, \dots k_n\}$ vectors of $\mathbb R^d$ as: $$ \forall i \neq j, k_i \perp k_j \\ \forall i, \lVert k_i \rVert = 1 $$ Suppose $\{v_1, \dots v_n\}$ vectors of $\mathbb R^d$ undefined, and $(a, b) \in [1, n]²$. We want: $$ c = \frac{1}{2}(v_a + v_b) $$ So : $$ (E_1) : \alpha_i = \begin{cases} \frac{1}{2} & \text{if $i \in \{a, b\}$} \\ 0 & \text{else} \end{cases} $$ $$ (E_1) : \begin{cases} \frac{1}{2} = \frac{\exp(k_a^t \cdot q)}{\exp(k_a^t \cdot q) + \exp(k_b^t \cdot q) +\sum_{j=1, j \not \in \{a, b\}}^{n} \exp(k_j^t \cdot q)}\\ \frac{1}{2} = \frac{\exp(k_b^t \cdot q)}{\exp(k_a^t \cdot q) + \exp(k_b^t \cdot q) +\sum_{j=1, j \not \in \{a, b\}}^{n} \exp(k_j^t \cdot q)}\\ 0 = \frac{\exp(k_{i \not \in \{a, b\}}^t \cdot q)}{\exp(k_a^t \cdot q) + \exp(k_b^t \cdot q) +\sum_{j=1, j \not \in \{a, b\}}^{n} \exp(k_j^t \cdot q)} \\ \end{cases} $$ $$ (E_1) : \begin{cases} \exp(k_a^t \cdot q) = \exp(k_b^t \cdot q) \\ \frac{1}{2} = \frac{\exp(k_a^t \cdot q)}{2\exp(k_a^t \cdot q) +\sum_{j=1, j \not \in \{a, b\}}^{n} \exp(k_j^t \cdot q)}\\ 0 = \frac{\exp(k_{i \not \in \{a, b\}}^t \cdot q)}{2 \exp(k_a^t \cdot q) +\sum_{j=1, j \not \in \{a, b\}}^{n} \exp(k_j^t \cdot q)} \\ \end{cases} $$ $$ (E_1) : \begin{cases} (k_a - k_b)^t \cdot q = 0 \\ \frac{1}{2} = \frac{1}{2 + \sum_{j=1, j \not \in \{a, b\}}^{n} \exp((k_j - k_a)^t \cdot q)}\\ 0 = \frac{1}{1 + \sum_{j=1, j \neq i}^{n} \exp((k_j - k_i)^t \cdot q)} \\ \end{cases} $$ Let's $\alpha$ be the angle between $(k_j - k_i)$ and $q$, and with the properties of orthogonality and norms of the $k_i$, we have: $$ \forall i \neq j, \\ (k_j - k_i)^t \cdot q = \lVert (k_j - k_i) \rVert \cdot \lVert q \rVert \cdot \cos(\alpha) \\ = 2\sqrt{2} \cdot \lVert q \rVert \cdot \cos(\alpha) $$ So $(E1)$ is not solvable, but can be approach with the following conditions : $$ q = z \cdot (k_a + k_b) \text{ with } z \to + \infty $$ Then : $$ (E_1) : \begin{cases} (k_a - k_b)^t \cdot q = 0 \\ \frac{1}{2} = \frac{1}{2 + \sum_{j=1, j \not \in \{a, b\}}^{n} \exp(-z)}\\ 0 = \frac{1}{1 + 2 \exp(z)} \\ \end{cases} $$ That is symptotically verified. ### Question c Suppose $k_i \sim \mathit{N(\mu_i, \Sigma)}$ #### c.i Suppose $\Sigma_i = \alpha \cdot I$ with $\alpha \to 0$ Then $k_i ≃ \mu_i$, so using the previous question $q = z \cdot (\mu_a + \mu_b)$ with $z \to + \infty$. #### c.ii Suppose $\Sigma_\alpha = \alpha \cdot I + \frac{1}{2} (\mu_a \cdot \mu_a^t)$ with $\alpha \to 0$ $\Sigma_a = \alpha \cdot I + \frac{1}{2}\lVert \mu_a \rVert ^2$ $\Sigma_a = \alpha \cdot I + \frac{1}{2}$ So each components of $\mu_i$ varies independantly of the variable with a variance of 1/2. In others words, we have : $$ k_i ≃ \mu_i \otimes \begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_n \end{pmatrix} \text{ with } \forall k \in [1, n], n_k \sim \mathit{N}(1, \frac{1}{2}) $$ So $$ q = z \cdot (n_a \otimes \mu_a + n_b \otimes \mu_b) \text{ with } z \to + \infty $$ Qualitatively we expect all dimensions to be gaussian distributed by $\mathit{N}(1, \frac{1}{2})$, then c will be approximatively equal to: $$ c = \frac{1}{2}(v_a + v_b) $$ ### Question d #### d.i Let's define: $$ q_1 = z_1 \cdot \mu_a \text{ with } z_1 \to + \infty \\ q_2 = z_2 \cdot \mu_b \text{ with } z_2 \to + \infty $$ #### d.ii Like in c.ii, the quantities will approximatively be equal to $$ c_1 ≃ v_a \\ c_2 ≃ v_b $$ So $$ c ≃ \frac{1}{2} (c_1 + c_2) $$