The Steinheart-Heart equation: $$ T = 1 / A+B ln(R) + C [ln(R)]^3 $$ Determing the 3 reference temperatures: $$ 1/T1=A+B ln(R_1) + C[ln(R_1)]3 \\ $$ $$ 1/T2=A+B ln(R_2) + C[ln(R_2)]3 $$ $$ 1/T3= A + B ln(R_3) + C[ln(R_3)]3 $$ Solving for coefficients: $$ C=\frac{X_3 (Y_1-Y_2) - X_1(Y_1-Y_2) + Y_1 X_1 - Y_1 X_2 - Y_3 X_1 + Y_3X_2} {({y_3})^{3} (y_1-Y_2) - (y_1)(y_2)^3 + (y_1)^4 - (y_1)^3(y_1−y_2) + (Y_3)(Y_2)^3 - (Y_3)(Y_1)^3} $$ $$ B = \frac{(x_1-x_2) + C(y_2)^3-C(y_1)^3}{(Y_1-Y_2)} $$ $$ A= x_2-By_2-C(y_2)^3 $$ --- Where: <table class="fixed-align"> <tbody> <tr> <td> $$ X_1 = 1/Tlow $$ $$ X_2 = 1/Tmid $$ $$ Y_1 = InRTIN $$ $$ Y_2 = InRT $$ $$ X_3 = 1/Thigh $$ $$ Y_3 = In RThigh $$ </td> <td valign="top", valign="right"> $$ T_i = Kelvin Temperature = t_i (°C) + 273.15 $$ $$ Tlow = Low temperature calibration point $$ $$ Tmid = Mid temperature calibration point $$ $$ Thigh = High temperature calibration point $$ $$ R1 = Resistance in ohms at temperature T_i $$ </td> </tr> </tbody> </table>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up