###### tags: `ノート` `TS` `解析` `single-cell RNA-seq` # 22-06: ES由来セルトリ細胞scRNAseq解析 FTSLC_scRNAseq 第2弾 (aggrしない) gscの0,2,3,4,5を抽出 <br> #### 2026/6/8 #### 【 作業場所&保存場所 】 • 作業場所  ~/osc-fs/22_TS_FTSLC_scRNAseq_2022/Seurat_Non_aggr --- #### ※ aggrしないでSeuratした方 【参考】 scRNA-seqデータの解析(応用編) https://hackmd.io/@takahirosuzuki/ByoEBNVPL <br> ### 1. gonadal somatic cellsを抽出 -> 0,2,3,4,5を抽出してUMAP ```r= library(Seurat) library(dplyr) library(patchwork) library(MAST) library(ggsci) load("09_gsc_res03_20220516.RData") #Cluster0,2,3,4,5の抽出_res01 data.integrated.gsc02345_01 <- subsetUmapClust( data = data.integrated.gsc, subset.name = "seurat_clusters", subset.value = c("0", "2", "3", "4","5"), npcs = 14, dims = 1:10, resolution=0.1) #20220608_data.integrated.gsc02345_DimPlot01 DimPlot(object = data.integrated.gsc02345_01, label = TRUE)+ scale_color_d3() #Cluster0,2,3,4,5の抽出_res02 data.integrated.gsc02345_02 <- subsetUmapClust( data = data.integrated.gsc, subset.name = "seurat_clusters", subset.value = c("0", "2", "3", "4","5"), npcs = 14, dims = 1:10, resolution=0.2) #20220608_data.integrated.gsc02345_DimPlot02 DimPlot(object = data.integrated.gsc02345_02, label = TRUE)+ scale_color_d3() #Cluster0,2,3,4,5の抽出_res03 data.integrated.gsc02345_03 <- subsetUmapClust( data = data.integrated.gsc, subset.name = "seurat_clusters", subset.value = c("0", "2", "3", "4","5"), npcs = 14, dims = 1:10, resolution=0.3) #20220608_data.integrated.gsc02345_DimPlot03 DimPlot(object = data.integrated.gsc02345_03, label = TRUE)+ scale_color_d3() #Cluster0,2,3,4,5の抽出_res04 data.integrated.gsc02345_04 <- subsetUmapClust( data = data.integrated.gsc, subset.name = "seurat_clusters", subset.value = c("0", "2", "3", "4","5"), npcs = 14, dims = 1:10, resolution=0.4) #20220608_data.integrated.gsc02345_DimPlot04 DimPlot(object = data.integrated.gsc02345_04, label = TRUE)+ scale_color_d3() ``` ![](https://i.imgur.com/DGItYvY.jpg) <br> ### 2. gonadal somatic cellsを抽出 -> 0,2,3,4,5を抽出した t-SNE ```r= #まずはgscのTSNE data.integrated.gsc <- RunTSNE( data.integrated.gsc, reduction = "pca", cells = NULL, dims = 1:10, features = NULL, seed.use = 1, tsne.method = "Rtsne", dim.embed = 2, distance.matrix = NULL, reduction.name = "tsne", reduction.key = "tSNE_") #20220608_TSNE_data.integrated.gsc (8x10) DimPlot(object = data.integrated.gsc , reduction = "tsne" , label = TRUE) data.integrated.gsc02345_01 <- RunTSNE( data.integrated.gsc02345_01, reduction = "pca", cells = NULL, dims = 1:10, features = NULL, seed.use = 1, tsne.method = "Rtsne", dim.embed = 2, distance.matrix = NULL, reduction.name = "tsne", reduction.key = "tSNE_") #20220608_TSNE_data.integrated.gsc02345_res01 (8x10) DimPlot(object = data.integrated.gsc02345_01 , reduction = "tsne" , label = TRUE)+ scale_color_ucscgb() data.integrated.gsc02345_02 <- RunTSNE( data.integrated.gsc02345_02, reduction = "pca", cells = NULL, dims = 1:10, features = NULL, seed.use = 1, tsne.method = "Rtsne", dim.embed = 2, distance.matrix = NULL, reduction.name = "tsne", reduction.key = "tSNE_") #20220608_TSNE_data.integrated.gsc02345_res02 (8x10) DimPlot(object = data.integrated.gsc02345_02 , reduction = "tsne" , label = TRUE)+ scale_color_ucscgb() data.integrated.gsc02345_03 <- RunTSNE( data.integrated.gsc02345_03, reduction = "pca", cells = NULL, dims = 1:10, features = NULL, seed.use = 1, tsne.method = "Rtsne", dim.embed = 2, distance.matrix = NULL, reduction.name = "tsne", reduction.key = "tSNE_") #20220608_TSNE_data.integrated.gsc02345_res03 (8x10) DimPlot(object = data.integrated.gsc02345_03, reduction = "tsne" , label = TRUE)+ scale_color_ucscgb() data.integrated.gsc02345_04 <- RunTSNE( data.integrated.gsc02345_04, reduction = "pca", cells = NULL, dims = 1:10, features = NULL, seed.use = 1, tsne.method = "Rtsne", dim.embed = 2, distance.matrix = NULL, reduction.name = "tsne", reduction.key = "tSNE_") #20220608_TSNE_data.integrated.gsc02345_res04 (8x10) DimPlot(object = data.integrated.gsc02345_04 , reduction = "tsne" , label = TRUE)+ scale_color_ucscgb() ``` ![](https://i.imgur.com/PaHSw1A.jpg) <br> ### 3. resolution=0.2のHeatmapと、progenitor,Stromal,Set1,Set2 の遺伝子でFeaturePlot Heatmap ```r= #20220608_data.integrated.gsc02345_DimPlot02 DimPlot(object = data.integrated.gsc02345_02, label = TRUE)+ scale_color_d3() # クラスター特異的遺伝の同定 integrated.markers <- FindAllMarkers( object = data.integrated.gsc02345_02, only.pos = FALSE, min.pct = 0.25, logfc.threshold = 0.25, test.use = "MAST") # 計算に少し時間がかかるのでこのオブジェクトはsaveしておく save(data.integrated.gsc02345_02, file="12_gsc02345_res02.RData") integrated.markers %>% filter(avg_log2FC >= 0) %>% group_by(cluster) %>% top_n(5, avg_log2FC) -> top5.posi #20220608_gsc02345_res02_HeatMap_Top5.pdf DoHeatmap(object = data.integrated.gsc02345_02, features=top5.posi$gene, size=3) ``` ![](https://i.imgur.com/UcxDJKv.png) FeaturePlot ```r= #progenitor # 20220608_FeaturePlot_Sox11 (4 x 35) FeaturePlot(object=data.integrated.gsc02345_02, features= "Sox11", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Ecm1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Ecm1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Nr2f1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Nr2f1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) pdfjoin --outfile 220608_FeaturePlot_progenitor.pdf 20220608_FeaturePlot_Sox11.pdf 20220608_FeaturePlot_Ecm1.pdf 20220608_FeaturePlot_Nr2f1.pdf #stromal # 20220608_FeaturePlot_Wnt5a FeaturePlot(object=data.integrated.gsc02345_02, features= "Wnt5a", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Pdgfra FeaturePlot(object=data.integrated.gsc02345_02, features= "Pdgfra", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Tcf21 FeaturePlot(object=data.integrated.gsc02345_02, features= "Tcf21", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Acta2 FeaturePlot(object=data.integrated.gsc02345_02, features= "Acta2", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Arx FeaturePlot(object=data.integrated.gsc02345_02, features= "Arx", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Gng13 FeaturePlot(object=data.integrated.gsc02345_02, features= "Gng13", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Lgr5 FeaturePlot(object=data.integrated.gsc02345_02, features= "Lgr5", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Apoc1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Apoc1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Gpc3 FeaturePlot(object=data.integrated.gsc02345_02, features= "Gpc3", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Hmcn1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Hmcn1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) pdfjoin --outfile 220608_FeaturePlot_stromal.pdf 20220608_FeaturePlot_Wnt5a.pdf 20220608_FeaturePlot_Pdgfra.pdf 20220608_FeaturePlot_Tcf21.pdf 20220608_FeaturePlot_Acta2.pdf 20220608_FeaturePlot_Arx.pdf 20220608_FeaturePlot_Gng13.pdf 20220608_FeaturePlot_Lgr5.pdf 20220608_FeaturePlot_Apoc1.pdf 20220608_FeaturePlot_Gpc3.pdf 20220608_FeaturePlot_Hmcn1.pdf #set1 # 20220608_FeaturePlot_Nr5a1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Nr5a1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Sfrp1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Sfrp1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Nr2f2 FeaturePlot(object=data.integrated.gsc02345_02, features= "Nr2f2", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) pdfjoin --outfile 220608_FeaturePlot_set1.pdf 20220608_FeaturePlot_Nr5a1.pdf 20220608_FeaturePlot_Arx.pdf 20220608_FeaturePlot_Sfrp1.pdf 20220608_FeaturePlot_Nr2f2.pdf #set2 # 20220608_FeaturePlot_Cdkn1b FeaturePlot(object=data.integrated.gsc02345_02, features= "Cdkn1b", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Fst FeaturePlot(object=data.integrated.gsc02345_02, features= "Fst", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Amhr2 FeaturePlot(object=data.integrated.gsc02345_02, features= "Amhr2", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220608_FeaturePlot_Mt1 FeaturePlot(object=data.integrated.gsc02345_02, features= "Mt1", col=c("gray", "red"), split.by="sample", min.cutoff=0.1, pt.size=1) pdfjoin --outfile 220608_FeaturePlot_set2.pdf 20220608_FeaturePlot_Cdkn1b.pdf 20220608_FeaturePlot_Fst.pdf 20220608_FeaturePlot_Amhr2.pdf 20220608_FeaturePlot_Mt1.pdf ```