###### tags: `ノート` `TS` `解析` `single-cell RNA-seq` # 22-08: ES由来セルトリ細胞scRNAseq解析 FTSLC_scRNAseq 第3弾 (aggrしない) さらに補足 <br> #### 2026/6/21 #### 【 作業場所&保存場所 】 • 作業場所  ~/osc-fs/22_TS_FTSLC_scRNAseq_2022/Seurat_Non_aggr --- #### ※ aggrしないでSeuratした方 --- 4ページ目:violinplotの色変更。 ```r= library(Seurat) library(dplyr) library(patchwork) library(MAST) library(ggsci) library(ComplexHeatmap) library(circlize) library(RColorBrewer) library(scales) library(tidyverse) library(cowplot) load("09_gsc_res03_20220516.RData")  #確認 DimPlot(object = data.integrated.gsc , reduction = "umap" , label = TRUE) + scale_color_aaas()  # 色をAAASに揃えた まとめviolin plot関数 multiVlnPlot <- function(object, features, pt.size = 0, log = FALSE, title = NULL, out_file = NULL, ...){ scaleFUN <- function(x) sprintf("%.1f", x) gplot.list <- list() for(i in 1:length(features)){ vg <- VlnPlot(object = object, features = features[i], pt.size = pt.size, log = log,...) vg <- vg + scale_y_continuous(labels=scaleFUN) vg <- vg + scale_fill_discrete(name="Cluster") vg <- vg + ylab(features[i]) vg <- vg + theme(legend.position = 'none', axis.title.x = element_blank(), axis.title.y = element_text(face="bold", vjust = 0.5), plot.title = element_blank(), axis.text.x = element_blank(), panel.border = element_rect(colour="gray1", fill=NA) ) + scale_fill_aaas() gplot.list <- c(gplot.list, list(vg)) } legend <- get_legend(gplot.list[[1]] + theme(legend.position = "right") + guides(color = guide_legend(ncol = 1)) ) # now add the title if(!is.null(title)){ gtitle <- ggdraw() + draw_label( title, fontface = 'bold', x = 0.5, hjust = 0.5 ) }else gtitle <- NULL gplot_all <- plot_grid(plotlist = gplot.list, ncol=1) gplot_all_title <- plot_grid(gtitle, gplot_all, nrow = 2, rel_heights = c(0.5/(length(features)+0.5), length(features)/(length(features)+0.5)) ) gplot_all_legend <- plot_grid(gplot_all_title, legend, ncol=2, rel_widths = c(8, .6)) plot(gplot_all_legend) if (!is.null(out_file)){ ggsave(file=out_file, plot=gplot_all_legend, width=14, height=length(features)+0.5) } return (gplot_all_legend) }  #マーカーの設定 sertoli = c("Sox9", "Mro", "Aard", "Amh", "Dhh", "Ptgds", "Hsd17b3") progenitor = c("Sox11", "Ecm1", "Nr2f1") granulosa = c("Kitl", "Inha", "Foxl2", "Runx1","Fst", "Akr1cl", "Cdkn1b", "Aard", "Hmgcs2") stromal = c("Wnt5a", "Pdgfra", "Tcf21", "Acta2", "Arx", "Gng13", "Lgr5", "Apoc1", "Gpc3", "Hmcn1")  # MultiVlnPlot_gsc_progenitor_markers (5x10) multiVlnPlot(object=data.integrated.gsc, features = progenitor, title="progenitor markers")  # MultiVlnPlot_gsc_granulosa_markers (14x10) multiVlnPlot(object=data.integrated.gsc, features = granulosa, title="granulosa markers")  # MultiVlnPlot_gsc_stromal_markers multiVlnPlot(object=data.integrated.gsc, features = stromal, title="stromal, markers")  # MultiVlnPlot_gsc_sertoli_markers multiVlnPlot(object=data.integrated.gsc, features = sertoli, title="sertoli markers") ``` ![](https://i.imgur.com/9iqhER2.png) <br> 3, 6, 8, 10ページ目: featurePlotの色変更。 ```r= load("05_20220516_cl02.RData") # all_UMAP.pdf (7.5x10) DimPlot(object = data.integrated , reduction = "umap" , label = TRUE)+ scale_color_ucscgb() # 20220621_all_FeaturePlot_Pou5f1 (8x10) FeaturePlot(object=data.integrated, features= "Pou5f1", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Ddx4 FeaturePlot(object=data.integrated, features= "Ddx4", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Pecam1 FeaturePlot(object=data.integrated, features= "Pecam1", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Flt1 FeaturePlot(object=data.integrated, features= "Flt1", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Hbb-y FeaturePlot(object=data.integrated, features= "Hbb-y", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Hba-a1 FeaturePlot(object=data.integrated, features= "Hba-a1", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Ppbp FeaturePlot(object=data.integrated, features= "Ppbp", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) # 20220621_all_FeaturePlot_Plek FeaturePlot(object=data.integrated, features= "Plek", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) ``` ![](https://i.imgur.com/9lQxJ0u.png) ```r= load("11_data.integrated.gsc16_02.RData") # 確認 DimPlot(object = data.integrated.gsc16_02 , reduction = "umap" , label = TRUE , split.by = "sample") # 20220621_FeaturePlot_Sox9 (5 x 35) FeaturePlot(object=data.integrated.gsc16_02, features= "Sox9", col=c("gray91", "magenta3"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220621_FeaturePlot_Amh FeaturePlot(object=data.integrated.gsc16_02, features= "Amh", col=c("gray91", "magenta3"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220621_FeaturePlot_Dhh FeaturePlot(object=data.integrated.gsc16_02, features= "Dhh", col=c("gray91", "magenta3"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220621_FeaturePlot_Hsd17b3 FeaturePlot(object=data.integrated.gsc16_02, features= "Hsd17b3", col=c("gray91", "magenta3"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220621_FeaturePlot_Mki67 (5 x 35) FeaturePlot(object=data.integrated.gsc16_02, features= "Mki67", col=c("gray91", "magenta3"), split.by="sample", min.cutoff=0.1, pt.size=1) # 20220621_gsc16_FeaturePlot_Pax8 FeaturePlot(object=data.integrated.gsc16_02, features= "Pax8", col=c("gray91", "magenta3"), min.cutoff=0.1, pt.size=1) ``` ![](https://i.imgur.com/gA6QUXs.png) ![](https://i.imgur.com/Ievr7Ta.png)