Research === ###### tags: `Research` Research topic --- - [Milestone](/hPm24codTfiOc6s6y9c5fw) Overview --- - [Pre-Trained Models: Past, Present and Future](/3wua-WymSE6PxCdgnd8Zxw) - [Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing](/TxTRYPctSjG9aGhmIsWogQ) - [LLaMA: Open and Efficient Foundation Language Models](/dKz1-PhMRqS2Dt3h5fy6TA) - [Llama 2: Open Foundation and Fine-Tuned Chat Models](/vlzD2IMyS5qUsTmGa3uDQQ) - [A Survey on Retrieval-Augmented Text Generation](/OgpOgiRlRRKQ089IduQHMw) - [Challenges and Applications of Large Language Models](/TuCr0w_RSWiVDfcxri0K-w) - [A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions](/9IY8N6SFRNS0bYFBwJX8bg) - [Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset](/wrLQNfG1RyuRQF5GA-GN2w) - [Advances in Multi-turn Dialogue Comprehension: A Survey](/mTKYCkM8T_-RwyCsdqGmvg) Related work --- - [Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference](/MpFO6n1nQ9SQW5ciZAdYPA) - [It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners](/vBaAoJ85TryLe7tVkWlvUA) - [RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning](/uVh_GEblRISATTsBO8i_kA) - [Parameter-efficient learned GPT](/benG-nTmSTC4uuks1FIBuw) - [Self-Instruct: Aligning Language Models with Self-Generated Instructions](/h1DoalSWRwaSYFZJws2vYw) - [REALM: Retrieval-Augmented Language Model Pre-Training](/IIH2VfD9TTmjoFezl5h-_w) - [Adaptive Semiparametric Language Models](/hwZRrrenRU-BLio0I062hw) - [SalesBot: Transitioning from Chit-Chat to Task-Oriented Dialogues](/5EGGKlzBSQa0N1Nq8hbE8g) - [Semi-Supervised Classification with Graph Convolutional Networks](/F8FiVuPtSte6akAle4n9qg) - [Graph Attention Networks](/HDZMsB-uQgaottY3UmC6pw) - [GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval](/YyR4wT8MQzikS1WoAXrHqw) - [Empathetic Dialogue Generation via Knowledge Enhancing and Emotion Dependency Modeling](/26htfW-gQAegLv4V00W4PA) - [ConceptNet 5.5: An Open Multilingual Graph of General Knowledge](/d7ucm80wQZStQNHILz2Bvw) - [Augmenting Neural Response Generation with Context-Aware Topical Attention](/-BxMfHZ2SBSCLt2cgMCnFw) Related work from other members --- - [GPT-Critic: Offline Reinforcement Learning for End-to-End Task-Oriented Dialogue Systems](/WkOBKBRvRMS_zeSF2xd8gA) - [BadPre: Task-agnostic Backdoor Attacks to Pre-trained NLP Foundation Models](/JJqPV2MITcOJe_-Og2rWjg) - [Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning](/iWnfGW6ISW6xXcyq-q8Epw) - [Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution](/jXjEQRMWRSmRV_i0GXlO4Q) - [LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning](https://hackmd.io/@bobbiaditya/ryxUEJNKn) LLaMA background knowledge --- - [RoFormer: Enhanced Transformer with Rotary Position Embedding](/OMO1tbZDSOGmgQUUeuUR3g) - [Training Compute-Optimal Large Language Models](/0msrrwJ6QmuiaDyFtF_cPQ)
{"metaMigratedAt":"2023-06-17T19:47:47.735Z","metaMigratedFrom":"Content","title":"Research","breaks":true,"description":"Milestone","contributors":"[{\"id\":\"8008890c-8864-4761-8a67-cd9ab7a27e6d\",\"add\":3729,\"del\":641},{\"id\":\"90f849d6-338f-486f-ae7f-d98ea98f0fda\",\"add\":133,\"del\":115}]"}
Expand menu