# Question 1: Evaluate the following sums ## (a) $$ \sum_{i=1}^{5} (2i - 1) = $$ <details> <summary> Example: </summary> We are tasked with solving the sum: $$ \sum_{i=1}^{4} (3i - 2) $$ ### Step 1: Create a Table We will evaluate $3i - 2$ for each value of $i$ from 1 to 4 and then sum the results. Below is the table with the first column as $i$ and the second column as $3i - 2$. | $i$ | $3i - 2$ | | --- | -------- | | 1 | $3(1) - 2 = 1$ | | 2 | $3(2) - 2 = 4$ | | 3 | $3(3) - 2 = 7$ | | 4 | $3(4) - 2 = 10$ | ### Step 2: Sum the Results Now, we sum the values in the second column: $$ 1 + 4 + 7 + 10 = 22 $$ ### Final Answer: The sum is: $$ \sum_{i=1}^{4} (3i - 2) = 22 $$ </details> ## (b) $$ \sum_{j=1}^{6} \frac{1}{j} = $$ <details> <summary> Example: </summary> We are tasked with solving the sum: $$ \sum_{j=1}^{4} \frac{2}{j} $$ ### Step 1: Create a Table We will evaluate $\frac{2}{j}$ for each value of $j$ from 1 to 4 and then sum the results. Below is the table with the first column as $j$ and the second column as $\frac{2}{j}$ evaluated at each $j$. | $j$ | $\frac{2}{j}$ | | --- | ------------- | | 1 | $\frac{2}{1} = 2$ | | 2 | $\frac{2}{2} = 1$ | | 3 | $\frac{2}{3}$ | | 4 | $\frac{2}{4} = \frac{1}{2}$ | ### Step 2: Sum the Results Now, we sum the values in the second column: $$ 2 + 1 + \frac{2}{3} + \frac{1}{2} $$ We will first express everything as a fraction with a common denominator. The least common denominator (LCD) for $1$, $\frac{2}{3}$, and $\frac{1}{2}$ is 6. Rewriting the terms: $$ 2 = \frac{12}{6}, \quad 1 = \frac{6}{6}, \quad \frac{2}{3} = \frac{4}{6}, \quad \frac{1}{2} = \frac{3}{6} $$ Now sum the fractions: $$ \frac{12}{6} + \frac{6}{6} + \frac{4}{6} + \frac{3}{6} = \frac{25}{6} $$ ### Final Answer: Thus, the exact sum is: $$ \sum_{j=1}^{4} \frac{2}{j} = \frac{25}{6} \approx 4.1667 $$ </details> ## (c) $$ \sum_{i=1}^{6} \dfrac{(-1)^i}{i} = $$ <details> <summary> Example: </summary> We are tasked with solving the sum: $$ \sum_{i=1}^{5} \dfrac{(-1)^{i+1}}{i} $$ ### Step 1: Create a Table We will evaluate $\dfrac{(-1)^{i+1}}{i}$ for each value of $i$ from 1 to 5 and then sum the results. Below is the table with the first column as $i$ and the second column as $\dfrac{(-1)^{i+1}}{i}$ evaluated at each $i$. | $i$ | $\frac{(-1)^{i+1}}{i}$ | | --- | --------------------- | | 1 | $\dfrac{(-1)^{1+1}}{1} = \dfrac{1}{1} = 1$ | | 2 | $\dfrac{(-1)^{2+1}}{2} = \dfrac{-1}{2}$ | | 3 | $\dfrac{(-1)^{3+1}}{3} = \dfrac{1}{3}$ | | 4 | $\dfrac{(-1)^{4+1}}{4} = \dfrac{-1}{4}$ | | 5 | $\dfrac{(-1)^{5+1}}{5} = \dfrac{1}{5}$ | ### Step 2: Sum the Results Now, we sum the values in the second column: $$ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} $$ We will find a common denominator for all terms. The least common denominator (LCD) for $1$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, and $\frac{1}{5}$ is 60. Rewriting the terms: $$ 1 = \frac{60}{60}, \quad \frac{1}{2} = \frac{30}{60}, \quad \frac{1}{3} = \frac{20}{60}, \quad \frac{1}{4} = \frac{15}{60}, \quad \frac{1}{5} = \frac{12}{60} $$ Now sum the fractions: $$ \frac{60}{60} - \frac{30}{60} + \frac{20}{60} - \frac{15}{60} + \frac{12}{60} $$ Simplifying: $$ \frac{60 - 30 + 20 - 15 + 12}{60} = \frac{47}{60} $$ ### Final Answer: Thus, the exact sum is: $$ \sum_{i=1}^{5} \frac{(-1)^{i+1}}{i} = \frac{47}{60} \approx 0.7833 $$ </details> # Question 2: Find the following derivatives ## (a) For the function: $$ f(x) = \frac{x - 1}{x + 1} $$ Find: $$ f'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function: $$ f(x) = \frac{x-2}{x+2} $$ To differentiate this, we will use the **quotient rule** for derivatives. The quotient rule states: $$ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} $$ Here, $u(x)$ is the **numerator** and $v(x)$ is the **denominator**. For our function $f(x) = \frac{x-2}{x+2}$, we have: - $u(x) = x - 2$ - $v(x) = x + 2$ ### Step 1: Identify the Inside and Outside Functions To make the application of the quotient rule easier, we'll organize our work in a table where we identify the "outside" and "inside" functions, their original forms, and their derivatives. | | Numerator ($u(x)$) | Denominator ($v(x)$) | | -------- | ------------------------ | ----------------------- | | Original | $x - 2$ | $x + 2$ | | Derivative | $1$ | $1$ | ### Step 2: Apply the Quotient Rule Using the quotient rule formula: $$ f'(x) = \frac{(x + 2) \cdot (1) - (x - 2) \cdot (1)}{(x + 2)^2} $$ ### Step 3: Simplify the Expression Now, simplify the numerator: $$ f'(x) = \frac{(x + 2) - (x - 2)}{(x + 2)^2} $$ Simplifying further: $$ f'(x) = \frac{x + 2 - x + 2}{(x + 2)^2} = \frac{4}{(x + 2)^2} $$ ### Final Answer: Thus, the derivative of the function is: $$ f'(x) = \frac{4}{(x + 2)^2} $$ </details> ## (b) For the function: $$ g(x) = \frac{2x + 1}{1 - x} $$ Find: $$ g'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function: $$ g(x) = \frac{3x+2}{4-x} $$ To differentiate this, we will use the **quotient rule** for derivatives. The quotient rule states: $$ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[v(x)]^2} $$ Here, $u(x)$ is the **numerator** and $v(x)$ is the **denominator**. For our function $g(x) = \frac{3x+2}{4-x}$, we have: - $u(x) = 3x + 2$ - $v(x) = 4 - x$ ### Step 1: Identify the Inside and Outside Functions To make the application of the quotient rule easier, we'll organize our work in a table where we identify the "outside" and "inside" functions, their original forms, and their derivatives. | | Numerator ($u(x)$) | Denominator ($v(x)$) | | -------- | ------------------------ | ----------------------- | | Original | $3x + 2$ | $4 - x$ | | Derivative | $3$ | $-1$ | ### Step 2: Apply the Quotient Rule Using the quotient rule formula: $$ g'(x) = \frac{(4 - x) \cdot (3) - (3x + 2) \cdot (-1)}{(4 - x)^2} $$ ### Step 3: Simplify the Expression First, simplify the numerator: $$ g'(x) = \frac{3(4 - x) + (3x + 2)}{(4 - x)^2} $$ Now distribute and simplify: $$ g'(x) = \frac{12 - 3x + 3x + 2}{(4 - x)^2} = \frac{12 + 2}{(4 - x)^2} = \frac{14}{(4 - x)^2} $$ ### Final Answer: Thus, the derivative of the function is: $$ g'(x) = \frac{14}{(4 - x)^2} $$ </details> ## (c) For the function: $$ h(x) = e^x \ln(x) $$ Find: $$ h'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function: $$ f(x) = e^{2x} \ln(x) $$ To differentiate this, we will use both the **chain rule** and the **product rule**. ### Step 1: Apply the Chain Rule for $e^{2x}$ The first part of the product rule involves the derivative of $e^{2x}$. This requires the **chain rule**, which states: $$ \frac{d}{dx} \left( f(u) \right) = f'(u) \cdot u' $$ The Outside function is $e^u$. The inside function is $2x$. Taking derivatives of each and putting them in the table gives: | | (Outside function) | (Inside function) | | -------- | --------------------------- | ----------------------- | | Original | $e^{u}$ | $2x$ | | Derivative | $e^{u}$ | $2$ | So, applying the chain rule: $$ \frac{d}{dx} \left( e^{2x} \right) =e^u \cdot 2 = 2e^{2x} $$ ### Step 2: Apply the Product Rule Now that we know how to differentiate $e^{2x}$, we can apply the **product rule**. The product rule states: $$ \frac{d}{dx} \left( u(x) \cdot v(x) \right) = u'(x) \cdot v(x) + u(x) \cdot v'(x) $$ For $f(x) = e^{2x} \ln(x)$, we identify: - $u(x) = e^{2x}$ - $v(x) = \ln(x)$ We already computed that $u'(x) = 2e^{2x}$, and we know the derivative of $\ln(x)$ is $\frac{1}{x}$. | | $e^{2x}$ (Outside function) | $\ln(x)$ (Inside function) | | -------- | --------------------------- | ------------------------- | | Original | $e^{2x}$ | $\ln(x)$ | | Derivative | $2e^{2x}$ | $\frac{1}{x}$ | ### Step 3: Combine Using the Product Rule Now, apply the product rule: $$ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) $$ Substitute the values we computed: $$ f'(x) = 2e^{2x} \cdot \ln(x) + e^{2x} \cdot \frac{1}{x} $$ ### Step 4: Simplify We can factor out $e^{2x}$ from both terms: $$ f'(x) = e^{2x} \left( 2 \ln(x) + \frac{1}{x} \right) $$ ### Final Answer: Thus, the derivative of the function is: $$ f'(x) = e^{2x} \left( 2 \ln(x) + \frac{1}{x} \right) $$ </details> # Question 3 ![{694384FB-27C1-477D-946F-174BDF3E24CD}](https://hackmd.io/_uploads/H15Wn4DA0.png) ![{99C095FF-A2EE-4BF5-A095-7A79BE558774}](https://hackmd.io/_uploads/rkDG24v0A.png) ## a. Divide the interval $[1, 4]$ into three equal subintervals. Draw in left and right rectangles for the function $v(x)$. Compute $L_3$ and $R_3$. <details> <summary> Left Rectangle Example: </summary> Let's say we do the same to a similar graph on the interval $[1,3]$ with two left rectangles: ![image](https://hackmd.io/_uploads/S1ip12uR0.png) The left rectangles would look like: ![image](https://hackmd.io/_uploads/HJk313ORC.png) Then the area would be the area of the first rectangle, $5 \cdot 1=5$ plus the area of the second rectangle, $4 \cdot 1=4$. Then $L_2=5+4=9$. </details> <details> <summary> Right Rectangle Example: </summary> Let's say we do the same to a similar graph on the interval $[1,3]$ with two right rectangles: ![image](https://hackmd.io/_uploads/rktkb3OCA.png) The right rectangles would look like: ![image](https://hackmd.io/_uploads/HJ9ixnOCA.png) Then the area would be the area of the first rectangle, $4 \cdot 1=4$ plus the area of the second rectangle, $2 \cdot 1=2$. Then $R_2=4+2=6$. </details> --- ## b. Replace the question marks with $L_3$ and $R_3$ as appropriate. Explain your choice. $$ ? \leq \int_1^4 v(x) \, dx \leq ? $$ <details> <summary> Example: </summary> If we use the example in the previous part a: $$ R_2 \leq \int_1^3 v(x) \, dx \leq L_2 $$ </details> --- # Question 4 In the following problems calculate the definite integral by referring to the figure with the indicated areas. ![{608A5A8D-25AE-453F-A252-9FBB7D5B2AFF}](https://hackmd.io/_uploads/HJsK34DCA.png) ## a. $\displaystyle \int_a^c f(x)dx$ <details> <summary> Example: </summary> Say instead that the areas are instead: | Area | Value | |--------|---------------------------| | A | 4.372 | | B | 2.894 | | C | 5.146 | | D | 3.521 | Then $$ \int_a^c f(x)dx =A-B+C=4.372-2.894+5.146=6.624 $$ </details> ## b. $\displaystyle \int_b^d f(x)dx$ <details> <summary> Example: </summary> Say instead that the areas are instead: | Area | Value | |--------|---------------------------| | A | 4.372 | | B | 2.894 | | C | 5.146 | | D | 3.521 | Then $$ \int_b^d f(x)dx =-B+C-D=-2.894+5.146-3.521=-1.269 $$ </details> ## c. $\displaystyle \int_a^d f(x)dx$ <details> <summary> Example: </summary> Say instead that the areas are instead: | Area | Value | |--------|---------------------------| | A | 4.372 | | B | 2.894 | | C | 5.146 | | D | 3.521 | Then $$ \int_a^d f(x)dx =A-B+C-D=4.372-2.894+5.146-3.521=3.103 $$ </details> ## d. $\displaystyle \int_0^d f(x)dx$ <details> <summary> Example: </summary> Say instead that the areas are instead: | Area | Value | |--------|---------------------------| | A | 4.372 | | B | 2.894 | | C | 5.146 | | D | 3.521 | Then $$ \int_0^d f(x)dx =C-D=5.146-3.521=1.625 $$ </details> # Question 5: Calculate the indicated Riemann sum $S_n$ for the function $f(x) = 25 - 3x^2$. Partition $[-2, 8]$ into five subintervals of equal length, and for each subinterval $[x_{k-1}, x_k]$, let $c_k = \dfrac{x_{k-1} + x_k}{2}$, $k = 1, 2, 3, 4, 5$. <details> <summary> Example: </summary> We are tasked with calculating the Riemann sum $S_n$ for the function: $$ f(x) = 16 - 2x^2 $$ over the interval $[-4, 6]$, partitioned into five subintervals of equal length. For each subinterval $[x_{k-1}, x_k]$, the midpoint $c_k$ is given by: $$ c_k = \frac{x_{k-1} + x_k}{2}, \quad k = 1, 2, 3, 4, 5 $$ ### Step 1: Determine the Length of Each Subinterval The interval $[-4, 6]$ has a total length: $$ 6 - (-4) = 10 $$ Since we are partitioning the interval into 5 subintervals, the length of each subinterval is: $$ \Delta x = \frac{10}{5} = 2 $$ ### Step 2: Identify the Partition Points The partition points are: | $k$ | $x_{k-1}$ | $x_k$ | |------|-----------|-------| | 1 | $-4$ | $-2$ | | 2 | $-2$ | $0$ | | 3 | $0$ | $2$ | | 4 | $2$ | $4$ | | 5 | $4$ | $6$ | ### Step 3: Compute the Midpoints The midpoints $c_k$ for each subinterval are calculated as: $$ c_k = \frac{x_{k-1} + x_k}{2} $$ | $k$ | $x_{k-1}$ | $x_k$ | Midpoint $c_k$ | |------|-----------|-------|----------------| | 1 | $-4$ | $-2$ | $-3$ | | 2 | $-2$ | $0$ | $-1$ | | 3 | $0$ | $2$ | $1$ | | 4 | $2$ | $4$ | $3$ | | 5 | $4$ | $6$ | $5$ | ### Step 4: Evaluate the Function at Each Midpoint We now evaluate $f(x) = 16 - 2x^2$ at each midpoint $c_k$: $$ f(x) = 16 - 2x^2 $$ | $c_k$ | $f(c_k) = 16 - 2c_k^2$ | |-------|------------------------| | $-3$ | $16 - 2(-3)^2 = -2$ | | $-1$ | $16 - 2(-1)^2 = 14$ | | $1$ | $16 - 2(1)^2 = 14$ | | $3$ | $16 - 2(3)^2 = -2$ | | $5$ | $16 - 2(5)^2 = -34$ | ### Step 5: Compute the Riemann Sum The Riemann sum $S_n$ is given by: $$ S_n = \sum_{k=1}^{5} f(c_k) \cdot \Delta x $$ Using $\Delta x = 2$ and the values of $f(c_k)$ computed above: $$ S_n = (-2) \cdot 2 + 14 \cdot 2 + 14 \cdot 2 + (-2) \cdot 2 + (-34) \cdot 2 $$ Simplifying: $$ S_n = -4 + 28 + 28 - 4 - 68 = -20 $$ ### Final Answer: The Riemann sum is: $$ S_n = -20 $$ </details>