[toc] # Question 1 ### (a) Simplify the following expression: $$ (2x^2+1)'(3x^2-1) - (2x^2+1)(3x^2-1)' = \quad \text{______} $$ ::: spoiler <summary> Example: </summary> # Example: Simplify the following expression $$ (3x^4+1)'(5x^3-1) - (3x^4+1)(5x^3-1)' $$ --- \begin{align*} &(3x^4+1)'(5x^3-1) - (3x^4+1)(5x^3-1)' \\ &= (12x^3)(5x^3 - 1) - (3x^4 + 1)(15x^2) \\ &= 12x^3(5x^3) - 12x^3(1) - (3x^4)(15x^2) - (1)(15x^2) \\ &= 60x^6 - 12x^3 - 45x^6 - 15x^2 \\ &= (60x^6 - 45x^6) - 12x^3 - 15x^2 \\ &= 15x^6 - 12x^3 - 15x^2 \end{align*} --- ### Final Answer: $$ (3x^4+1)'(5x^3-1) - (3x^4+1)(5x^3-1)' = 15x^6 - 12x^3 - 15x^2 $$ ::: --- ### (b) Simplify the following expression: $$ (x^4)'(4x+6) - x^4(4x+6)' = \quad \text{______} $$ ::: spoiler <summary> Example: </summary> We are asked to differentiate the expression: $$ (x^3)'(5x+7) - x^3(5x+7)' $$ Now let's break it down step by step. ### Step 1: Differentiate $(x^3)'$ The derivative of $x^3$ is: $$ (x^3)' = 3x^2 $$ ### Step 2: Differentiate $(5x + 7)'$ The derivative of $5x + 7$ is: $$ (5x + 7)' = 5 $$ ### Step 3: Substitute into the expression Now substitute the derivatives back into the original expression: $$ (x^3)'(5x + 7) - x^3(5x + 7)' = 3x^2(5x + 7) - x^3(5) $$ ### Step 4: Simplify Now simplify the expression: $$ 3x^2(5x + 7) - 5x^3 = 3x^2(5x) + 3x^2(7) - 5x^3 $$ $$ = 15x^3 + 21x^2 - 5x^3 $$ Now combine like terms: $$ (15x^3 - 5x^3) + 21x^2 = 10x^3 + 21x^2 $$ ### Final Answer: The simplified expression is: $$ 10x^3 + 21x^2 $$ ::: --- ### (c) Simplify the following expression: $$ (2x+1)'(6x-4) - (2x+1)(6x-4)' = \quad \text{______} $$ ::: spoiler <summary> Example: </summary> We are asked to differentiate the expression: $$ (3x+2)'(5x-7) - (3x+2)(5x-7)' $$ This is another application of the product rule. Let's go through the steps. ### Step 1: Differentiate $(3x+2)'$ The derivative of $3x + 2$ is: $$ (3x+2)' = 3 $$ ### Step 2: Differentiate $(5x-7)'$ The derivative of $5x - 7$ is: $$ (5x-7)' = 5 $$ ### Step 3: Substitute into the expression Now substitute the derivatives back into the original expression: $$ (3x+2)'(5x-7) - (3x+2)(5x-7)' = 3(5x-7) - (3x+2)(5) $$ ### Step 4: Simplify Now simplify the expression: $$ 3(5x - 7) - (3x + 2)(5) = 3(5x) - 3(7) - 5(3x) - 5(2) $$ $$ = 15x - 21 - 15x - 10 $$ Now combine like terms: $$ 15x - 15x - 21 - 10 = -31 $$ ### Final Answer: The simplified expression is: $$ -31 $$ ::: --- ### (d) Simplify the following expression: $$ (5x-4)'(3x+7) - (5x-4)(3x+7)' = \quad \text{______} $$ ::: spoiler <summary> Example: </summary> We are asked to differentiate the expression: $$ (5x-4)'(3x+7) - (5x-4)(3x+7)' $$ This is another application of the product rule. Let's break it down. ### Step 1: Differentiate $(5x-4)'$ The derivative of $5x - 4$ is: $$ (5x-4)' = 5 $$ ### Step 2: Differentiate $(3x+7)'$ The derivative of $3x + 7$ is: $$ (3x+7)' = 3 $$ ### Step 3: Substitute into the expression Now substitute the derivatives back into the original expression: $$ (5x-4)'(3x+7) - (5x-4)(3x+7)' = 5(3x+7) - (5x-4)(3) $$ ### Step 4: Simplify Now simplify the expression: $$ 5(3x + 7) - 3(5x - 4) = 5(3x) + 5(7) - 3(5x) + 3(4) $$ $$ = 15x + 35 - 15x + 12 $$ Now combine like terms: $$ 15x - 15x + 35 + 12 = 47 $$ ### Final Answer: The simplified expression is: $$ 47 $$ ::: --- # Question 2 ### (a) Find $f'(x)$ for the following and simplify: $$ f(x) = x^2 e^x \quad \Rightarrow \quad f'(x) = \text{______} $$ ::: spoiler <summary> Example: </summary> Use the product rule to differentiate $f(x) = x^3 e^x$. | Function | $x^3$ | $e^x$ | |--------------|--------------|------------| | Derivative | $3x^2$ | $e^x$ | --- ### Apply the Product Rule: The product rule states: $$ (fg)' = f'g + fg' $$ For $f(x) = x^3 e^x$: $$ f'(x) = (3x^2)(e^x) + (x^3)(e^x) $$ --- ### Final Answer: $$ f'(x) = 3x^2 e^x + x^3 e^x $$ ::: --- ### (b) Find $f'(x)$ for the following and simplify: $$ f(x) = x^3 \ln(x) \quad \Rightarrow \quad f'(x) = \text{______} $$ ::: spoiler <summary> Example: </summary> Use the product rule to differentiate $f(x) = x^4 \ln(x)$. | Function | $x^4$ | $\ln(x)$ | |--------------|----------|-------------| | Derivative | $4x^3$ | $\frac{1}{x}$ | --- ### Apply the Product Rule: The product rule states: $$ (fg)' = f'g + fg' $$ For $f(x) = x^4 \ln(x)$: $$ f'(x) = (4x^3)(\ln(x)) + (x^4)\left(\frac{1}{x}\right) $$ --- ### Final Answer: $$ f'(x) = 4x^3 \ln(x) + x^3 $$ ::: --- # Question 3 ### (a) Find $f'(x)$ and simplify for: $$ f(x) = \frac{2x+3}{x-2} \quad \Rightarrow \quad f'(x) = \text{______} $$ ::: spoiler <summary> Example: </summary> Use the quotient rule to differentiate $f(x) = \dfrac{5x+4}{x-3}$. | Function | $5x+4$ | $x-3$ | |--------------|-----------|----------| | Derivative | $5$ | $1$ | --- ### Apply the Quotient Rule: The quotient rule states: $$ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} $$ For $f(x) = \frac{5x+4}{x-3}$: $$ f'(x) = \frac{(5)(x-3) - (5x+4)(1)}{(x-3)^2} $$ --- ### Detailed Simplification: 1. Distribute in the first term: $(5)(x-3)$ $$ 5(x-3) = 5x - 15 $$ 2. Expand the second term: $(5x+4)(1)$ $$ 5x+4 $$ 3. Combine the terms in the numerator: $$ 5x - 15 - (5x + 4) $$ 4. Distribute the negative sign: $$ 5x - 15 - 5x - 4 = -19 $$ So the expression becomes: $$ f'(x) = \frac{-19}{(x-3)^2} $$ --- ### Final Answer: $$ f'(x) = \frac{-19}{(x-3)^2} $$ ::: --- ### (b) Find $f'(x)$ and simplify for: $$ f(x) = \frac{x^2+2}{x^2-3} \quad \Rightarrow \quad f'(x) = \text{______} $$ ::: spoiler <summary> Example: </summary> Use the quotient rule to differentiate $f(x) = \dfrac{x^3+5}{x^4-6}$. | Function | $x^3 + 5$ | $x^4 - 6$ | |--------------|--------------|--------------| | Derivative | $3x^2$ | $4x^3$ | --- ### Apply the Quotient Rule: The quotient rule states: $$ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} $$ For $f(x) = \frac{x^3+5}{x^4-6}$: $$ f'(x) = \frac{(3x^2)(x^4 - 6) - (x^3+5)(4x^3)}{(x^4 - 6)^2} $$ --- ### Detailed Simplification: 1. Expand the first term: $(3x^2)(x^4 - 6)$ $$ 3x^2(x^4 - 6) = 3x^6 - 18x^2 $$ 2. Expand the second term: $(x^3+5)(4x^3)$ $$ (x^3+5)(4x^3) = 4x^6 + 20x^3 $$ 3. Combine the terms in the numerator: $$ (3x^6 - 18x^2) - (4x^6 + 20x^3) $$ 4. Distribute the negative sign: $$ 3x^6 - 18x^2 - 4x^6 - 20x^3 $$ 5. Combine like terms: $$ (3x^6 - 4x^6) - 20x^3 - 18x^2 = -x^6 - 20x^3 - 18x^2 $$ So the expression becomes: $$ f'(x) = \frac{-x^6 - 20x^3 - 18x^2}{(x^4 - 6)^2} $$ --- ### Final Answer: $$ f'(x) = \frac{-x^6 - 20x^3 - 18x^2}{(x^4 - 6)^2} $$ ::: --- # Question 4 ### Find $f'(x)$ and the equation of the line tangent to the graph of $f(x)$ at $x = 2$: $$ f(x) = \frac{x-8}{3x-4} \quad \Rightarrow \quad f'(x) = \text{______} $$ ::: spoiler <summary> Example: </summary> ### Given: $$ f(x) = \frac{x-7}{4x-5} $$ We need to: 1. Find the derivative $f'(x)$ using the quotient rule. 2. Use $f'(3)$ to find the slope of the tangent line at $x = 3$. 3. Find the equation of the tangent line at $x = 3$. --- ### Step 1: Find $f'(x)$ using the quotient rule The quotient rule is: $$ \left( \frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} $$ Let: - $f(x) = x - 7$ (numerator) - $g(x) = 4x - 5$ (denominator) | Function | $x-7$ | $4x-5$ | |--------------|----------|---------| | Derivative | $1$ | $4$ | Now, apply the quotient rule: $$ f'(x) = \frac{(1)(4x - 5) - (x - 7)(4)}{(4x - 5)^2} $$ --- ### Step 2: Simplify $f'(x)$ 1. Expand the first term: $(1)(4x - 5)$ $$ 4x - 5 $$ 2. Expand the second term: $(x - 7)(4)$ $$ 4x - 28 $$ 3. Combine the terms in the numerator: $$ (4x - 5) - (4x - 28) = 4x - 5 - 4x + 28 $$ 4. Simplify: $$ 28 - 5 = 23 $$ So the derivative is: $$ f'(x) = \frac{23}{(4x - 5)^2} $$ --- ### Step 3: Find the slope at $x = 3$ To find the slope of the tangent line, evaluate $f'(x)$ at $x = 3$: $$ f'(3) = \frac{23}{(4(3) - 5)^2} = \frac{23}{(12 - 5)^2} = \frac{23}{7^2} = \frac{23}{49} $$ Thus, the slope of the tangent line at $x = 3$ is $\frac{23}{49}$. --- ### Step 4: Find the equation of the tangent line The equation of a line is given by: $$ y - y_1 = m(x - x_1) $$ Where: - $m$ is the slope ($m = \frac{23}{49}$). - $(x_1, y_1)$ is the point on the curve at $x = 3$. First, we find $f(3)$: $$ f(3) = \frac{3 - 7}{4(3) - 5} = \frac{-4}{12 - 5} = \frac{-4}{7} $$ So the point of tangency is $(3, -\frac{4}{7})$. Now, plug the values into the line equation: $$ y - \left(-\frac{4}{7}\right) = \frac{23}{49}(x - 3) $$ Simplifying: $$ y + \frac{4}{7} = \frac{23}{49}(x - 3) $$ Multiply out the right-hand side: $$ y + \frac{4}{7} = \frac{23}{49}x - \frac{69}{49} $$ Now, subtract $\frac{4}{7}$ (or equivalently $\frac{28}{49}$) from both sides: $$ y = \frac{23}{49}x - \frac{69}{49} - \frac{28}{49} = \frac{23}{49}x - \frac{97}{49} $$ --- ### Final Answer: - The derivative is: $$ f'(x) = \frac{23}{(4x - 5)^2} $$ - The equation of the tangent line at $x = 3$ is: $$ y = \frac{23}{49}x - \frac{97}{49} $$  ::: ---
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up