# Practice Exam 1b (not done) ## 1. Evaluate the following limits (if they exist) for $g(x)=\dfrac{3x^2-7x+4}{x^2-4}$. ### (a) $\displaystyle \lim_{x \to 0} g(x)$ ### (b) $\displaystyle \lim_{x \to 2} g(x)$ ### ( c) $\displaystyle \lim_{x \to -2} g(x)$ ### (d) $\displaystyle \lim_{x \to 1} g(x)$ ## 2. Understanding Derivatives ### (a) Explain the geometric interpretation of a derivative. ### (b) How does the derivative help in understanding the behavior of functions? ### ( c) Calculate the derivative of $h(x)=3x^2$ using the definition of a derivative. ## 3. Given the function $h(x)$: $$h(x)=\begin{cases} \dfrac{x^2-9}{x-3} & x>3 \\ 2x & x\leq 3 \end{cases}$$ ### (a) Compute $\displaystyle \lim_{x \to 3^-} h(x)$ ### (b) Compute $\displaystyle \lim_{x \to 3^+} h(x)$ ### ( c) Find $h(3)$ ### (d) Discuss the continuity of $h(x)$ at $x=3$. ## 4. Determine the equation of the tangent line to the curve $f(x)=x^3-6x^2+11x-5$ at $x=2$. ## 5. Define what it means for a function to be continuous at a point. ## 6. A company determines that it costs $1500 to produce 50 units of a product and $3500 to produce 150 units. If $C(x)$ represents the cost to produce $x$ units, what is the slope of $C(x)$, and what does it signify in this context? ## 7. Simplify the expression $\dfrac{\sqrt{x^3} \cdot x^{1/2}}{\sqrt[4]{x}}$. ## 8. Consider the function $g(x)=2x^3-6x$. ### (a) Calculate the average rate of change of $g(x)$ over the interval $[1,3]$. ### (b) Find $g'(x)$. ### (c) Determine the instantaneous rate of change of $g(x)$ at $x=1$. ### (d) Calculate the equation of the tangent line to $g(x)$ at $x=1$. ## 9. If a business's revenue $R(q)$ from selling $q$ units of a product is given by $R(q) = 100e^{-0.1q}$, where $q$ is in hundreds and $R$ in dollars, interpret the meaning of $R'(50) = -5$. ## 10. Derive the following functions without using the limit definition: ### (a) $f(x)=5x^5-\dfrac{3}{x}+2\sqrt{x}$ ### (b) $L(x)=(2x-3)^2$ ### (c) $g(x)=\dfrac{x^3-4x+5}{x^{1/2}}$ ## 11. Given the graph of a function $f(x)$ (to be provided), answer the following: ### (a) $\displaystyle \lim_{x \to 2^-} f(x)$ ### (b) $\displaystyle \lim_{x \to 2^+} f(x)$ ### ( c) $\displaystyle \lim_{x \to 0} f(x)$ ### (d) $\displaystyle \lim_{x \to 3^-} f(x)$ ### (e) $\displaystyle \lim_{x \to 3^+} f(x)$ ### (f) $\displaystyle \lim_{x \to 3} f(x)$ ### (g) Identify $x$-values where $f(x)$ is not continuous.