[toc] ## Question 1 Decompose each function $C(x)$ into an outside function $f(u)$ and an inside function $u=g(x)$ such that $C(x)=(f \circ g)(x)=f(g(x))$. ### (a) $$C(x) = 2+4x^2-4x^8$$ ::: spoiler <summary> Example: </summary> $C(x)=3+5x^3-4x^6$ $f(u)=3+5u-4u^2$ $u=g(x)=x^3$ Can put it in a nice little table: | Outside | Inside | |---- | ---- | |$f(u)=3+5u-4u^2$ | $u=g(x)=x^3$ | ::: --- ### (b) $$C(x) = \frac{1-x^2}{2+3x^4}$$ ::: spoiler <summary> Example: </summary> $C(x)=\dfrac{3-x^4}{4+5x^8}$ $f(u)=\dfrac{3-u}{4+5u^2}$ $u=g(x)=x^4$ | Outside | Inside | |---- | ---- | |$f(u)=\dfrac{3-u}{4+5u^2}$ | $u=g(x)=x^4$ | ::: --- ### (c) $$C(x) = \sqrt{1+x^2}$$ ::: spoiler <summary> Example: </summary> $C(x)=\sqrt{4+5x^3}$ $f(u)=\sqrt{u}=u^{1/2}$ $u=g(x)=4+5x^3$ | Outside | Inside | |------------------|---------------| | $f(u) = \sqrt{u} = u^{1/2}$ | $u=g(x) = 4 + 5x^3$ | ::: --- ### (d) $$C(x) = \frac{1}{3x^2-2x}$$ ::: spoiler <summary> Example: </summary> $C(x)=\dfrac{2}{4x^3-5x}$ $f(u)=\dfrac{2}{u}$ $u=g(x)=4x^3-5x$ | Outside | Inside | |------------------|---------------| | $f(u) = \dfrac{2}{u}$ | $u=g(x) = 4x^3 - 5x$ | ::: --- ### (e) $$C(x) = \frac{1+2e^x}{e^{2x}-1}$$ ::: spoiler <summary> Example: </summary> $C(x)=\dfrac{2+3e^{x}}{e^{3x}-1}$ $f(u)=\dfrac{2+3u}{u^3-1}$ $u=g(x)=e^x$ | Outside | Inside | |------------------|---------------| | $f(u) = \dfrac{2+3u}{u^3-1}$ | $u=g(x) = e^x$ | ::: --- ### (f) $$C(x) = e^{2x^3-5}$$ ::: spoiler <summary> Example: </summary> $C(x)=e^{5x^2-4}$ $f(u)=e^u$ $g(x)=5x^2-4$ | Outside | Inside | |------------------|---------------| | $f(u) = e^u$ | $u=g(x) = 5x^2 - 4$ | ::: --- ### (g) $$C(x) = \ln(2x^3-x^2)$$ ::: spoiler <summary> Example: </summary> $C(x)=\ln(3x^4+2x^3)$ $f(u)=\ln u$ $g(x)=3x^4+2x^3$ | Outside | Inside | |------------------|---------------| | $f(u) = \ln u$ | $u=g(x) = 3x^4 + 2x^3$ | ::: --- ## Question 2 Replace ? with an expression that will make the indicated equation valid. ### (a) $$ \frac{d}{dx}(4-2x^2)^3 = 3(4-2x^2)^2\: ? $$ ::: spoiler <summary> Example: </summary> $$ \frac{d}{dx}(5+7x^3)^4 = 4(5+7x^3)^3? $$ - The inside function is $u=5+7x^3$. - The derivative of the inside function is $u'=21x^2$ Thus $$ \frac{d}{dx}(5+7x^3)^4 = 4(5+7x^3)^3(21x^2) $$ This can be shown in this neat table: | | Outside | Inside | | --- |------------------|---------------| | Original | $f(u) =u^4$ | $u=g(x) = 5+7x^3$ | | Derivative | $f'(u)=4u^3$ | $u'=g'(x)=21x^2$ | ::: --- ### (b) $$ \frac{d}{dx}(3x^2+7)^5 = 5(3x^2+7)^4\: ? $$ ::: spoiler <summary> Example: </summary> $$ \frac{d}{dx}(4x^5+6)^7 = 7(4x^5+6)^6 ? $$ - The inside function is $u = 4x^5+6$. - The derivative of the inside function is $u' = 20x^4$. Thus, $$ \frac{d}{dx}(4x^5+6)^7 = 7(4x^5+6)^6 (20x^4) $$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) =u^7$ | $u=g(x) = 4x^5+6$ | | Derivative | $f'(u)=7u^6$ | $u'=g'(x)=20x^4$ | ::: --- ### (c) $$ \frac{d}{dx}e^{x^2+1} = e^{x^2+1}\: ? $$ ::: spoiler <summary> Example: </summary> $$ \frac{d}{dx}e^{x^4+2} = e^{x^4+2} ? $$ - The inside function is $u = x^4 + 2$. - The derivative of the inside function is $u' = 4x^3$. Thus, $$ \frac{d}{dx}e^{x^4+2} = e^{x^4+2} (4x^3) $$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) = e^u$ | $u = x^4 + 2$ | | Derivative | $f'(u) = e^u$ | $u' = 4x^3$ | ::: --- ### (d) $$ \frac{d}{dx}e^{4x-2} = e^{4x-2}\: ? $$ ::: spoiler <summary> Example: </summary> $$ \frac{d}{dx}e^{3x-5} = e^{3x-5} ? $$ - The inside function is $u = 3x - 5$. - The derivative of the inside function is $u' = 3$. Thus, $$ \frac{d}{dx}e^{3x-5} = e^{3x-5} (3) $$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) = e^u$ | $u = 3x - 5$ | | Derivative | $f'(u) = e^u$ | $u' = 3$ | ::: --- ## Question 3 Find $f'(x)$ and simplify: ### (a) $$ f(x) = (3x^2+5)^5 $$ ::: spoiler <summary> Example: </summary> $$ f(x) = (4x^3+5)^7 $$ - The outside function is $u^7$. - The derivative of the outside function is $7u^6$. - The inside function is $4x^3+5$ - The derivative of the inside function is $12x^2$. According to the Chain Rule, the derivative is $\text{Out}' \cdot \text{In}'=7u^6 \cdot 12x^2$ $$ f'(x)=7(4x^3+5)^6(12x^2) $$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) = u^7$ | $u = 4x^3 + 5$ | | Derivative | $f'(u) = 7u^6$ | $u' = 12x^2$ | ::: --- ### (b) $$ f(x) = 2\ln(x^2-3x+4) $$ ::: spoiler <summary> Example: </summary> $$ f(x) = 3\ln(x^2-5x+4) $$ $$f'(x)=\dfrac{3}{x^2-5x+4} (2x-5)$$ Simplifying it further: $$f'(x)=\dfrac{6x-15}{x^2-5x+4}$$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) = 3\ln(u)$ | $u = x^2 - 5x + 4$ | | Derivative | $f'(u) = \dfrac{3}{u}$ | $u' = 2x - 5$ | ::: --- ## Question 4 Find $f'(x)$ and the equation of the line tangent to the graph of $f(x)$ at $x=e$. $$f(x) = \sqrt{\ln(x)}$$ ::: spoiler <summary> Example: </summary> $$f(x)=\sqrt[3]{\ln x}$$ Find the equation of the tangent line to the graph of $f(x)$ at $x=e$. ### Problem $$ f(x) = \sqrt[3]{\ln x} $$ Find the equation of the tangent line to the graph of $f(x)$ at $x = e$. ### Solution 1. **Find the derivative $f'(x)$:** We need to apply the chain rule. First, rewrite $f(x)$ as: $$ f(x) = (\ln x)^{1/3} $$ Now, differentiate $f(x)$: $$ f'(x) = \frac{1}{3}(\ln x)^{-2/3} \cdot \frac{1}{x} $$ So the derivative is: $$ f'(x) = \frac{1}{3x(\ln x)^{2/3}} $$ | | Outside | Inside | |---|------------------|---------------| | Original | $f(u) = u^{1/3}$ | $u = \ln x$ | | Derivative | $f'(u) = \dfrac{1}{3}u^{-2/3}$ | $u' = \dfrac{1}{x}$ | 2. **Evaluate the derivative at $x = e$:** Substitute $x = e$ into the derivative: $$ f'(e) = \frac{1}{3e(\ln e)^{2/3}} $$ Since $\ln e = 1$, we have: $$ f'(e) = \frac{1}{3e} $$ 3. **Find the point $(e, f(e))$:** Now, evaluate $f(e)$: $$ f(e) = \sqrt[3]{\ln e} = \sqrt[3]{1} = 1 $$ So the point of tangency is $(e, 1)$. 4. **Find the equation of the tangent line:** The equation of the tangent line is given by the point-slope form: $$ y - y_1 = m(x - x_1) $$ Here, $m = f'(e) = \frac{1}{3e}$ and $(x_1, y_1) = (e, 1)$. Substituting these values: $$ y - 1 = \frac{1}{3e}(x - e) $$ Thus, the equation of the tangent line is: $$ y = \frac{1}{3e}(x - e) + 1 $$ :::