[toc]
## Critical Value
$x=c$ is a critical value of $f(x)$ when both are true:
1. $f'(c)=0$ or $f'(c)$ is undefined.
2. $f(c)$ exists.
### Example
$f(x)=x^2-6x+3$
$f'(x)=2x-6$
Set $f'(x)=0$ and solve:
$2x-6=0$
$2x=6$
$x=3$
Plug in $x=3$ into the original function to check that the $y$-value exists:
$f(3)=3^2-6(3)+3=9-18+3=-6$
Since $f'(3)=0$ and $f(3)=-6$ which exists, $x=3$ is a critical number of $f$.
## Absolute Maximum
An Absolute Maximum is sometimes called a Global Maximum. It is where the function's $y$ value achieves its largest value. It is the tallest mountain in the given interval $[a,b]$.
## Absolute Minimum
An Absolute Minimum is sometimes called a Global Minimum. It is where the function's $y$ value achieves its lowest value. It is the deepest valley in the given interval $[a,b]$.
- Where do these absolute minimums and maximums happen?
## Examples
| Graph | Left Endpoint | Critical Value in between | Right Endpoint |
| -------- | -------- | -------- |-------- |
|  | $x=-4$ and $y=1$ | **Absolute Maximum** $x=-1$ and $y=4$ | **Absolute Minimum** $x=3$ and $y=-1$ |
| Graph | Left Endpoint | Critical Value in between | Right Endpoint |
|  | **Absolute Minimum** $x=-3$ and $y=-2$ | | **Absolute Maximum** $x=5$ and $y=4$ |
| Graph | Left Endpoint | Critical Value in between | Right Endpoint |
|  | **Absolute Minimum** $x=-1$ and $y=0$ | **Absolute Maximum** $x=2$ and $y=3$ | $x=3$ and $y=2$ |
| Graph | Left Endpoint | Critical Value in between | Right Endpoint |
| | **Absolute Maximum** $x=-4$ and $y=2$ | $x=-2$ and $y=-1$ | **Absolute Minimum** $x=1$ and $y=-4$ |
| Graph | Left Endpoint | Critical Value in between | Right Endpoint |
|  | $x=-3$ and $y=1$ | Absolute Minimum $x=-1$ and $y=-1$ | Absolute Maximum $x=4$ and $y=4$ |
$f(x)$ only has absolute minimums or absolute maximums either at the <details> endpoints </details>
or somewhere in between when <details> $f'(c)=0$ </details>
---
## To find where $f(x)$ has an absolute maximum and minimum on interval $[a,b]$.
### Step 1. Find $f'(x)$.
### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$.
### Step 3. Plug $c$ into the original function to get the $y$-value.
### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value.
### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$.
### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$.
---
## Example 1: Find the Absolute Minimum and Maximum of $f(x)=x^2-6x+3$ on the interval $[1,4]$
### Step 1. Find $f'(x)$.
<details> <summary> Solution: </summary>
$f'(x)=2x-6$
</details>
### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$.
<details> <summary> Solution: </summary>
$2x-6=0$
$2x=6$
$x=3$
Note that $3$ is in the interval $[1,4]$ since $1<3<4$.
</details>
### Step 3. Plug $c$ into the original function to get the $y$-value.
<details> <summary> Solution: </summary>
Critical Value in between: $y=f(3)=3^2-6(3)+3=9-18+3=-6$
</details>
### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value.
<details> <summary> Solution: </summary>
Note that our interval is $[1,4]$, so $a=1$ and $b=4$.
Left Endpoint $y=f(1)=1^2-6(3)+3=1-6+3=-2$
Right Endpoint $y=f(4)=4^2-6(4)+3=16-24+3=-5$
</details>
### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$.
<details> <summary> Solution: </summary>
| $x$ | $y=f(x)$ | Min or Max |
| -------- | -------- | -------- |
| $1$ | $-2$ | Absolute Maximum |
| $3$ | $-6$ | Absolute Minimum |
| $4$ | $-5$ | |
$f(x)$ has an absolute maximum value at $x=1$ and $y=-2$.
</details>
### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$.
<details> <summary> Solution: </summary>
$f(x)$ has an absolute minimum value at $x=3$ and $y=-6$.

</details>
## Example 2: Find the Absolute Minimum and Maximum of $f(x)=1-x^{2/3}$ on the interval $[-1,8]$
### Step 1. Find $f'(x)$.
<details> <summary> Solution: </summary>
$f'(x)=\dfrac{2}{3}x^{2/3-1}=\dfrac{2}{3}x^{-1/3}=\dfrac{2}{3x^{1/3}}$
$f'(x)=\dfrac{2}{3x^{1/3}}$
</details>
### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$.
<details> <summary> Solution: </summary>
$f'(x)=\dfrac{2}{3x^{1/3}}$ is never zero as the numerator never equals zero.
However, $f'(x)=\dfrac{2}{3x^{1/3}}$ is undefined when the denominator is zero, which is when $x=0$.
Note that $f(0)=1-0^{2/3}=1-0=1$ which exists. So $c=0$ is a critical value of $f$ in the interval $[-1,8]$.
</details>
### Step 3. Plug $c$ into the original function to get the $y$-value.
<details> <summary> Solution: </summary>
Critical Value in between: $y=f(0)=1-0^{2/3}=1-0=1$
</details>
### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value.
<details> <summary> Solution: </summary>
Note that our interval is $[-1,8]$, so $a=-1$ and $b=8$.
Left Endpoint $y=f(-1)=1-(-1)^{2/3}=1-1=0$
Right Endpoint $y=f(8)=1-8^{2/3}=1-4=-3$
</details>
### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$.
<details> <summary> Solution: </summary>
| $x$ | $y=f(x)$ | Min or Max |
| -------- | -------- | -------- |
| $-1$ | $0$ | |
| $0$ | $1$ | Absolute Maximum |
| $8$ | $-3$ | Absolute Minimum |
$f(x)$ has an absolute maximum value at $x=0$ and $y=1$.
</details>
### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$.
<details> <summary> Solution: </summary>
$f(x)$ has an absolute minimum value at $x=8$ and $y=-3$.

</details>