[toc] ## Critical Value $x=c$ is a critical value of $f(x)$ when both are true: 1. $f'(c)=0$ or $f'(c)$ is undefined. 2. $f(c)$ exists. ### Example $f(x)=x^2-6x+3$ $f'(x)=2x-6$ Set $f'(x)=0$ and solve: $2x-6=0$ $2x=6$ $x=3$ Plug in $x=3$ into the original function to check that the $y$-value exists: $f(3)=3^2-6(3)+3=9-18+3=-6$ Since $f'(3)=0$ and $f(3)=-6$ which exists, $x=3$ is a critical number of $f$. ## Absolute Maximum An Absolute Maximum is sometimes called a Global Maximum. It is where the function's $y$ value achieves its largest value. It is the tallest mountain in the given interval $[a,b]$. ## Absolute Minimum An Absolute Minimum is sometimes called a Global Minimum. It is where the function's $y$ value achieves its lowest value. It is the deepest valley in the given interval $[a,b]$. - Where do these absolute minimums and maximums happen? ## Examples | Graph | Left Endpoint | Critical Value in between | Right Endpoint | | -------- | -------- | -------- |-------- | | ![image](https://hackmd.io/_uploads/rkbGrINxkx.png) | $x=-4$ and $y=1$ | **Absolute Maximum** $x=-1$ and $y=4$ | **Absolute Minimum** $x=3$ and $y=-1$ | | Graph | Left Endpoint | Critical Value in between | Right Endpoint | | ![image](https://hackmd.io/_uploads/HyXhB8Vxkg.png) | **Absolute Minimum** $x=-3$ and $y=-2$ | | **Absolute Maximum** $x=5$ and $y=4$ | | Graph | Left Endpoint | Critical Value in between | Right Endpoint | | ![image](https://hackmd.io/_uploads/rJ4TUUVeyg.png) | **Absolute Minimum** $x=-1$ and $y=0$ | **Absolute Maximum** $x=2$ and $y=3$ | $x=3$ and $y=2$ | | Graph | Left Endpoint | Critical Value in between | Right Endpoint | | ![image](https://hackmd.io/_uploads/HyrtOUVx1l.png)| **Absolute Maximum** $x=-4$ and $y=2$ | $x=-2$ and $y=-1$ | **Absolute Minimum** $x=1$ and $y=-4$ | | Graph | Left Endpoint | Critical Value in between | Right Endpoint | | ![image](https://hackmd.io/_uploads/r1hQOUVxJg.png) | $x=-3$ and $y=1$ | Absolute Minimum $x=-1$ and $y=-1$ | Absolute Maximum $x=4$ and $y=4$ | $f(x)$ only has absolute minimums or absolute maximums either at the <details> endpoints </details> or somewhere in between when <details> $f'(c)=0$ </details> --- ## To find where $f(x)$ has an absolute maximum and minimum on interval $[a,b]$. ### Step 1. Find $f'(x)$. ### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$. ### Step 3. Plug $c$ into the original function to get the $y$-value. ### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value. ### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$. ### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$. --- ## Example 1: Find the Absolute Minimum and Maximum of $f(x)=x^2-6x+3$ on the interval $[1,4]$ ### Step 1. Find $f'(x)$. <details> <summary> Solution: </summary> $f'(x)=2x-6$ </details> ### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$. <details> <summary> Solution: </summary> $2x-6=0$ $2x=6$ $x=3$ Note that $3$ is in the interval $[1,4]$ since $1<3<4$. </details> ### Step 3. Plug $c$ into the original function to get the $y$-value. <details> <summary> Solution: </summary> Critical Value in between: $y=f(3)=3^2-6(3)+3=9-18+3=-6$ </details> ### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value. <details> <summary> Solution: </summary> Note that our interval is $[1,4]$, so $a=1$ and $b=4$. Left Endpoint $y=f(1)=1^2-6(3)+3=1-6+3=-2$ Right Endpoint $y=f(4)=4^2-6(4)+3=16-24+3=-5$ </details> ### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$. <details> <summary> Solution: </summary> | $x$ | $y=f(x)$ | Min or Max | | -------- | -------- | -------- | | $1$ | $-2$ | Absolute Maximum | | $3$ | $-6$ | Absolute Minimum | | $4$ | $-5$ | | $f(x)$ has an absolute maximum value at $x=1$ and $y=-2$. </details> ### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$. <details> <summary> Solution: </summary> $f(x)$ has an absolute minimum value at $x=3$ and $y=-6$. ![image](https://hackmd.io/_uploads/r1z7C8Exyg.png) </details> ## Example 2: Find the Absolute Minimum and Maximum of $f(x)=1-x^{2/3}$ on the interval $[-1,8]$ ### Step 1. Find $f'(x)$. <details> <summary> Solution: </summary> $f'(x)=\dfrac{2}{3}x^{2/3-1}=\dfrac{2}{3}x^{-1/3}=\dfrac{2}{3x^{1/3}}$ $f'(x)=\dfrac{2}{3x^{1/3}}$ </details> ### Step 2. Find $x$ when $f'(x)=0$ or is undefined. Throw out any $x$ values that are outside the interval $[a,b]$. Say there's only one critical value $c$ such that $f'(c)=0$. <details> <summary> Solution: </summary> $f'(x)=\dfrac{2}{3x^{1/3}}$ is never zero as the numerator never equals zero. However, $f'(x)=\dfrac{2}{3x^{1/3}}$ is undefined when the denominator is zero, which is when $x=0$. Note that $f(0)=1-0^{2/3}=1-0=1$ which exists. So $c=0$ is a critical value of $f$ in the interval $[-1,8]$. </details> ### Step 3. Plug $c$ into the original function to get the $y$-value. <details> <summary> Solution: </summary> Critical Value in between: $y=f(0)=1-0^{2/3}=1-0=1$ </details> ### Step 4. Plug the endpoints $a,b$ into the original function to get the $y$-value. <details> <summary> Solution: </summary> Note that our interval is $[-1,8]$, so $a=-1$ and $b=8$. Left Endpoint $y=f(-1)=1-(-1)^{2/3}=1-1=0$ Right Endpoint $y=f(8)=1-8^{2/3}=1-4=-3$ </details> ### Step 5. The largest $y$-value is the Absolute Maximum of $f(x)$ on $[a,b]$. <details> <summary> Solution: </summary> | $x$ | $y=f(x)$ | Min or Max | | -------- | -------- | -------- | | $-1$ | $0$ | | | $0$ | $1$ | Absolute Maximum | | $8$ | $-3$ | Absolute Minimum | $f(x)$ has an absolute maximum value at $x=0$ and $y=1$. </details> ### Step 6. The smallest $y$-value is the Absolute Minimum of $f(x)$ on $[a,b]$. <details> <summary> Solution: </summary> $f(x)$ has an absolute minimum value at $x=8$ and $y=-3$. ![image](https://hackmd.io/_uploads/H1vyzwVlyl.png) </details>