# In-Class Activity 2.3 ## Question 1 Simplify each expression, write without negative or fractional exponents. ### a. $\dfrac{x^2(x^{5/2})^3}{\sqrt{x^5}}$ ::: spoiler <summary> Solution: </summary> #### Step 1: Simplify the numerator The numerator is $x^2(x^{5/2})^3$. - Simplify $(x^{5/2})^3$ using the power of a power rule: $(a^m)^n = a^{m \cdot n}$. $$ (x^{5/2})^3 = x^{\frac{5}{2} \cdot 3} = x^{15/2} $$ So, the numerator becomes: $$ x^2 \cdot x^{15/2} $$ - Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$. $$ x^2 \cdot x^{15/2} = x^{2 + 15/2} = x^{\frac{4}{2} + \frac{15}{2}} = x^{19/2} $$ #### Step 2: Simplify the denominator The denominator is $\sqrt{x^5}$, which can be rewritten as: $$ \sqrt{x^5} = x^{5/2} $$ #### Step 3: Simplify the entire expression Now, the expression becomes: $$ \dfrac{x^{19/2}}{x^{5/2}} $$ - Use the quotient of powers rule: $a^m / a^n = a^{m - n}$. $$ x^{\frac{19}{2} - \frac{5}{2}} = x^{\frac{19 - 5}{2}} = x^{14/2} = x^7 $$ #### Final Answer: $$ x^7 $$ ::: ### b. $\dfrac{x^{-1}\sqrt{x^5}}{x^2\sqrt[3]{x}}$ ::: spoiler <summary> Solution: </summary> ### Simplify the expression: $$\dfrac{x^{-1}\sqrt{x^5}}{x^2\sqrt[3]{x}}$$ #### Step 1: Simplify the numerator The numerator is $x^{-1} \sqrt{x^5}$. - Rewrite $\sqrt{x^5}$ as $x^{5/2}$. $$ \sqrt{x^5} = x^{5/2} $$ So, the numerator becomes: $$ x^{-1} \cdot x^{5/2} $$ - Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$. $$ x^{-1} \cdot x^{5/2} = x^{-1 + \tfrac{5}{2}} = x^{\tfrac{-2}{2} + \tfrac{5}{2}} = x^{3/2} $$ #### Step 2: Simplify the denominator The denominator is $x^2 \sqrt[3]{x}$. - Rewrite $\sqrt[3]{x}$ as $x^{1/3}$. $$ \sqrt[3]{x} = x^{1/3} $$ So, the denominator becomes: $$ x^2 \cdot x^{1/3} $$ - Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$. $$ x^2 \cdot x^{1/3} = x^{2 + \tfrac{1}{3}} = x^{\tfrac{6}{3} + \tfrac{1}{3}} = x^{7/3} $$ #### Step 3: Simplify the entire expression Now, the expression becomes: $$ \dfrac{x^{3/2}}{x^{7/3}} $$ - Use the quotient of powers rule: $a^m / a^n = a^{m - n}$. $$ x^{\frac{3}{2} - \frac{7}{3}} = x^{\frac{9}{6} - \frac{14}{6}} = x^{-\frac{5}{6}} $$ #### Step 4: Remove the negative exponent Since $x^{-\frac{5}{6}} = \dfrac{1}{x^{5/6}}$, the final simplified expression is: #### Final Answer: $$ \dfrac{1}{x^{5/6}} $$ ::: ## Question 2 Factor: ### a. $2x^3-4x^2-6x$ ::: spoiler <summary> Solution: </summary> ### Factor the expression: $$2x^3 - 4x^2 - 6x$$ #### Step 1: Factor out the greatest common factor (GCF) The GCF of $2x^3$, $-4x^2$, and $-6x$ is $2x$. Factor out $2x$: $$ 2x(x^2 - 2x - 3) $$ #### Step 2: Factor the quadratic expression $x^2 - 2x - 3$ Now, factor $x^2 - 2x - 3$. We need two numbers that multiply to $-3$ and add up to $-2$. The numbers are $-3$ and $1$. So, we factor the quadratic as: $$ x^2 - 2x - 3 = (x - 3)(x + 1) $$ Check: | | $x$ | $+1$ | |---------|--------|--------| | $x$ | $x \cdot x = x^2$ | $x \cdot 1 = x$ | | $-3$ | $-3 \cdot x = -3x$ | $-3 \cdot 1 = -3$ | $x^2+x-3x-3=x^2-2x-3$ Checked. #### Step 3: Write the fully factored form Now substitute this back into the expression: $$ 2x(x - 3)(x + 1) $$ #### Final Answer: The completely factored form of $2x^3 - 4x^2 - 6x$ is: $$ 2x(x - 3)(x + 1) $$ ::: ### b. $x^3-9x$ ::: spoiler <summary> Solution: </summary> #### Step 1: Factor out the greatest common factor (GCF) The GCF of $x^3$ and $-9x$ is $x$. Factor out $x$: $$ x(x^2 - 9) $$ #### Step 2: Factor the quadratic expression $x^2 - 9$ The expression $x^2 - 9$ is a difference of squares, which factors as: $$ x^2 - 9 = (x - 3)(x + 3) $$ #### Step 3: Write the fully factored form Now substitute this back into the expression: $$ x(x - 3)(x + 3) $$ #### Step 4: Check the factorization of $x^2 - 9$ using the multiplication table We factored $x^2 - 9$ as: $$ x^2 - 9 = (x - 3)(x + 3) $$ Now, let's verify this by multiplying $(x - 3)(x + 3)$ using a multiplication table. | | $x$ | $+3$ | |---------|--------|--------| | $x$ | $x \cdot x = x^2$ | $x \cdot 3 = 3x$ | | $-3$ | $-3 \cdot x = -3x$ | $-3 \cdot 3 = -9$ | #### Step 5: Combine the terms from the multiplication table: $$ x^2 + 3x - 3x - 9 $$ #### Step 6: Simplify: $$ x^2 - 9 $$ This matches the original quadratic expression, confirming that the factorization is correct. ### Final Answer: The completely factored form of $x^3 - 9x$ is: $$ x(x - 3)(x + 3) $$ ::: ### c. $6x^4+48x^3+72x^2$ ::: spoiler <summary> Solution: </summary> #### Step 1: Factor out the greatest common factor (GCF) The GCF of $6x^4$, $48x^3$, and $72x^2$ is $6x^2$. Factor out $6x^2$: $$ 6x^2(x^2 + 8x + 12) $$ #### Step 2: Factor the quadratic expression $x^2 + 8x + 12$ We need two numbers that multiply to $12$ and add up to $8$. The numbers are $6$ and $2$. So, we can factor the quadratic as: $$ x^2 + 8x + 12 = (x + 6)(x + 2) $$ #### Step 3: Write the fully factored form Now substitute this back into the expression: $$ 6x^2(x + 6)(x + 2) $$ #### Final Answer: The completely factored form of $6x^4 + 48x^3 + 72x^2$ is: $$ 6x^2(x + 6)(x + 2) $$ ::: ### d. $x^2-2x-6$ ::: spoiler <summary> Solution: </summary> ### Factor the expression using the quadratic formula: $$x^2 - 2x - 6$$ #### Step 1: Recall the quadratic formula The quadratic formula is: $$ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ For the quadratic equation $x^2 - 2x - 6 = 0$, the coefficients are: - $a = 1$ - $b = -2$ - $c = -6$ #### Step 2: Plug the values into the quadratic formula $$ x = \dfrac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-6)}}{2(1)} $$ Simplify: $$ x = \dfrac{2 \pm \sqrt{4 + 24}}{2} $$ $$ x = \dfrac{2 \pm \sqrt{28}}{2} $$ #### Step 3: Simplify the square root $$ x = \dfrac{2 \pm \sqrt{4 \cdot 7}}{2} = \dfrac{2 \pm 2\sqrt{7}}{2} $$ Now simplify further by canceling out the common factor of $2$: $$ x = 1 \pm \sqrt{7} $$ #### Step 4: Write the factored form The roots of the equation are: $$ x = 1 + \sqrt{7} \quad \text{or} \quad x = 1 - \sqrt{7} $$ Therefore, the factored form of the quadratic is: $$ (x - (1 + \sqrt{7}))(x - (1 - \sqrt{7})) $$ #### Final Answer: The factored form of $x^2 - 2x - 6$ using the quadratic formula is: $$ (x - (1 + \sqrt{7}))(x - (1 - \sqrt{7})) $$ ::: ## Question 3 Find all partition numbers for each function. ### a. $f(x)=\dfrac{3x+8}{x-4}$ ::: spoiler <summary> Solution: </summary> ### Find all partition numbers for the function: $$f(x) = \dfrac{3x+8}{x-4}$$ #### Step 1: Find where the function is undefined The function is undefined when the denominator equals zero. Set the denominator equal to zero: $$ x - 4 = 0 $$ Solve for $x$: $$ x = 4 $$ Thus, $x = 4$ is a partition number because the function is undefined at this point. #### Step 2: Find where the numerator equals zero The function may have zeros where the numerator equals zero. Set the numerator equal to zero: $$ 3x + 8 = 0 $$ Solve for $x$: $$ 3x = -8 $$ $$ x = \dfrac{-8}{3} $$ #### Step 3: Conclusion The partition numbers for the function $f(x) = \dfrac{3x+8}{x-4}$ are: $$ x = 4 \quad \text{(undefined)} \quad \text{and} \quad x = -\dfrac{8}{3} \quad \text{(zero of the function)} $$ ::: ### b. $f(x)=\dfrac{x^2+4x-45}{x^2+6x}$ ::: spoiler <summary> Solution: </summary> ### Find all partition numbers for the function: $$f(x) = \dfrac{x^2 + 4x - 45}{x^2 + 6x}$$ #### Step 1: Find where the function is undefined The function is undefined when the denominator equals zero. Set the denominator equal to zero: $$ x^2 + 6x = 0 $$ Factor the denominator: $$ x(x + 6) = 0 $$ Solve for $x$: $$ x = 0 \quad \text{or} \quad x = -6 $$ Thus, $x = 0$ and $x = -6$ are partition numbers because the function is undefined at these points. #### Step 2: Find where the numerator equals zero The function may have zeros where the numerator equals zero. Set the numerator equal to zero: $$ x^2 + 4x - 45 = 0 $$ Factor the numerator: $$ (x - 5)(x + 9) = 0 $$ Solve for $x$: $$ x = 5 \quad \text{or} \quad x = -9 $$ #### Step 3: Conclusion The partition numbers for the function $f(x) = \dfrac{x^2 + 4x - 45}{x^2 + 6x}$ are: - $x = 0$ (undefined) - $x = -6$ (undefined) - $x = 5$ (zero of the function) - $x = -9$ (zero of the function) ::: ## Question 4 Use the sign chart to solve the inequality. Express answer in inequality and interval notation. $f(x)=\dfrac{x-4}{x^2+2x}<0$ ::: spoiler <summary> Solution: </summary> ### Solve the inequality: $$f(x) = \dfrac{x - 4}{x^2 + 2x} < 0$$ #### Step 1: Find partition numbers To create the sign chart, we first need to find where the expression equals zero or is undefined. 1. **Numerator**: The numerator is $x - 4$. Set it equal to zero: $$ x - 4 = 0 \quad \Rightarrow \quad x = 4 $$ 2. **Denominator**: The denominator is $x^2 + 2x$. Set it equal to zero: $$ x(x + 2) = 0 \quad \Rightarrow \quad x = 0 \quad \text{or} \quad x = -2 $$ So, the partition numbers are $x = 4$, $x = 0$, and $x = -2$. #### Step 2: Create intervals Using the partition numbers $x = -2$, $x = 0$, and $x = 4$, we can split the number line into the following intervals: - $(-\infty, -2)$ - $(-2, 0)$ - $(0, 4)$ - $(4, \infty)$ #### Step 3: Test each interval We now test a value from each interval to determine if $f(x) < 0$ (negative) or $f(x) > 0$ (positive). - **Interval $(-\infty, -2)$**: Pick $x = -3$: $$ f(-3) = \dfrac{-3 - 4}{(-3)^2 + 2(-3)} = \dfrac{-7}{9 - 6} = \dfrac{-7}{3} < 0 $$ So, $f(x) < 0$ in $(-\infty, -2)$. - **Interval $(-2, 0)$**: Pick $x = -1$: $$ f(-1) = \dfrac{-1 - 4}{(-1)^2 + 2(-1)} = \dfrac{-5}{1 - 2} = \dfrac{-5}{-1} = 5 > 0 $$ So, $f(x) > 0$ in $(-2, 0)$. - **Interval $(0, 4)$**: Pick $x = 2$: $$ f(2) = \dfrac{2 - 4}{(2)^2 + 2(2)} = \dfrac{-2}{4 + 4} = \dfrac{-2}{8} = -\dfrac{1}{4} < 0 $$ So, $f(x) < 0$ in $(0, 4)$. - **Interval $(4, \infty)$**: Pick $x = 5$: $$ f(5) = \dfrac{5 - 4}{(5)^2 + 2(5)} = \dfrac{1}{25 + 10} = \dfrac{1}{35} > 0 $$ So, $f(x) > 0$ in $(4, \infty)$. | Interval | Test Point | $f(x)$ Sign | |---------------|------------|-------------| | $(-\infty, -2)$ | $x = -3$ | Negative | | $(-2, 0)$ | $x = -1$ | Positive | | $(0, 4)$ | $x = 2$ | Negative | | $(4, \infty)$ | $x = 5$ | Positive | #### Step 4: Identify where $f(x) < 0$ From the sign chart, we see that $f(x) < 0$ in the intervals $(-\infty, -2)$ and $(0, 4)$. #### Step 5: Express the solution in inequality and interval notation The solution to the inequality $f(x) = \dfrac{x - 4}{x^2 + 2x} < 0$ is: - **Inequality notation**: $$ x<-2 \quad \text{or} \quad 0 < x < 4 $$ - **Interval notation**: $$ (-\infty, -2) \cup (0, 4) $$ :::