# In-Class Activity 2.3
## Question 1
Simplify each expression, write without negative or fractional exponents.
### a. $\dfrac{x^2(x^{5/2})^3}{\sqrt{x^5}}$
::: spoiler
<summary> Solution: </summary>
#### Step 1: Simplify the numerator
The numerator is $x^2(x^{5/2})^3$.
- Simplify $(x^{5/2})^3$ using the power of a power rule: $(a^m)^n = a^{m \cdot n}$.
$$
(x^{5/2})^3 = x^{\frac{5}{2} \cdot 3} = x^{15/2}
$$
So, the numerator becomes:
$$
x^2 \cdot x^{15/2}
$$
- Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$.
$$
x^2 \cdot x^{15/2} = x^{2 + 15/2} = x^{\frac{4}{2} + \frac{15}{2}} = x^{19/2}
$$
#### Step 2: Simplify the denominator
The denominator is $\sqrt{x^5}$, which can be rewritten as:
$$
\sqrt{x^5} = x^{5/2}
$$
#### Step 3: Simplify the entire expression
Now, the expression becomes:
$$
\dfrac{x^{19/2}}{x^{5/2}}
$$
- Use the quotient of powers rule: $a^m / a^n = a^{m - n}$.
$$
x^{\frac{19}{2} - \frac{5}{2}} = x^{\frac{19 - 5}{2}} = x^{14/2} = x^7
$$
#### Final Answer:
$$
x^7
$$
:::
### b. $\dfrac{x^{-1}\sqrt{x^5}}{x^2\sqrt[3]{x}}$
::: spoiler
<summary> Solution: </summary>
### Simplify the expression:
$$\dfrac{x^{-1}\sqrt{x^5}}{x^2\sqrt[3]{x}}$$
#### Step 1: Simplify the numerator
The numerator is $x^{-1} \sqrt{x^5}$.
- Rewrite $\sqrt{x^5}$ as $x^{5/2}$.
$$
\sqrt{x^5} = x^{5/2}
$$
So, the numerator becomes:
$$
x^{-1} \cdot x^{5/2}
$$
- Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$.
$$
x^{-1} \cdot x^{5/2} = x^{-1 + \tfrac{5}{2}} = x^{\tfrac{-2}{2} + \tfrac{5}{2}} = x^{3/2}
$$
#### Step 2: Simplify the denominator
The denominator is $x^2 \sqrt[3]{x}$.
- Rewrite $\sqrt[3]{x}$ as $x^{1/3}$.
$$
\sqrt[3]{x} = x^{1/3}
$$
So, the denominator becomes:
$$
x^2 \cdot x^{1/3}
$$
- Use the product of powers rule: $a^m \cdot a^n = a^{m + n}$.
$$
x^2 \cdot x^{1/3} = x^{2 + \tfrac{1}{3}} = x^{\tfrac{6}{3} + \tfrac{1}{3}} = x^{7/3}
$$
#### Step 3: Simplify the entire expression
Now, the expression becomes:
$$
\dfrac{x^{3/2}}{x^{7/3}}
$$
- Use the quotient of powers rule: $a^m / a^n = a^{m - n}$.
$$
x^{\frac{3}{2} - \frac{7}{3}} = x^{\frac{9}{6} - \frac{14}{6}} = x^{-\frac{5}{6}}
$$
#### Step 4: Remove the negative exponent
Since $x^{-\frac{5}{6}} = \dfrac{1}{x^{5/6}}$, the final simplified expression is:
#### Final Answer:
$$
\dfrac{1}{x^{5/6}}
$$
:::
## Question 2
Factor:
### a. $2x^3-4x^2-6x$
::: spoiler
<summary> Solution: </summary>
### Factor the expression:
$$2x^3 - 4x^2 - 6x$$
#### Step 1: Factor out the greatest common factor (GCF)
The GCF of $2x^3$, $-4x^2$, and $-6x$ is $2x$.
Factor out $2x$:
$$
2x(x^2 - 2x - 3)
$$
#### Step 2: Factor the quadratic expression $x^2 - 2x - 3$
Now, factor $x^2 - 2x - 3$. We need two numbers that multiply to $-3$ and add up to $-2$. The numbers are $-3$ and $1$.
So, we factor the quadratic as:
$$
x^2 - 2x - 3 = (x - 3)(x + 1)
$$
Check:
| | $x$ | $+1$ |
|---------|--------|--------|
| $x$ | $x \cdot x = x^2$ | $x \cdot 1 = x$ |
| $-3$ | $-3 \cdot x = -3x$ | $-3 \cdot 1 = -3$ |
$x^2+x-3x-3=x^2-2x-3$ Checked.
#### Step 3: Write the fully factored form
Now substitute this back into the expression:
$$
2x(x - 3)(x + 1)
$$
#### Final Answer:
The completely factored form of $2x^3 - 4x^2 - 6x$ is:
$$
2x(x - 3)(x + 1)
$$
:::
### b. $x^3-9x$
::: spoiler
<summary> Solution: </summary>
#### Step 1: Factor out the greatest common factor (GCF)
The GCF of $x^3$ and $-9x$ is $x$.
Factor out $x$:
$$
x(x^2 - 9)
$$
#### Step 2: Factor the quadratic expression $x^2 - 9$
The expression $x^2 - 9$ is a difference of squares, which factors as:
$$
x^2 - 9 = (x - 3)(x + 3)
$$
#### Step 3: Write the fully factored form
Now substitute this back into the expression:
$$
x(x - 3)(x + 3)
$$
#### Step 4: Check the factorization of $x^2 - 9$ using the multiplication table
We factored $x^2 - 9$ as:
$$
x^2 - 9 = (x - 3)(x + 3)
$$
Now, let's verify this by multiplying $(x - 3)(x + 3)$ using a multiplication table.
| | $x$ | $+3$ |
|---------|--------|--------|
| $x$ | $x \cdot x = x^2$ | $x \cdot 3 = 3x$ |
| $-3$ | $-3 \cdot x = -3x$ | $-3 \cdot 3 = -9$ |
#### Step 5: Combine the terms from the multiplication table:
$$
x^2 + 3x - 3x - 9
$$
#### Step 6: Simplify:
$$
x^2 - 9
$$
This matches the original quadratic expression, confirming that the factorization is correct.
### Final Answer:
The completely factored form of $x^3 - 9x$ is:
$$
x(x - 3)(x + 3)
$$
:::
### c. $6x^4+48x^3+72x^2$
::: spoiler
<summary> Solution: </summary>
#### Step 1: Factor out the greatest common factor (GCF)
The GCF of $6x^4$, $48x^3$, and $72x^2$ is $6x^2$.
Factor out $6x^2$:
$$
6x^2(x^2 + 8x + 12)
$$
#### Step 2: Factor the quadratic expression $x^2 + 8x + 12$
We need two numbers that multiply to $12$ and add up to $8$. The numbers are $6$ and $2$.
So, we can factor the quadratic as:
$$
x^2 + 8x + 12 = (x + 6)(x + 2)
$$
#### Step 3: Write the fully factored form
Now substitute this back into the expression:
$$
6x^2(x + 6)(x + 2)
$$
#### Final Answer:
The completely factored form of $6x^4 + 48x^3 + 72x^2$ is:
$$
6x^2(x + 6)(x + 2)
$$
:::
### d. $x^2-2x-6$
::: spoiler
<summary> Solution: </summary>
### Factor the expression using the quadratic formula:
$$x^2 - 2x - 6$$
#### Step 1: Recall the quadratic formula
The quadratic formula is:
$$
x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$
For the quadratic equation $x^2 - 2x - 6 = 0$, the coefficients are:
- $a = 1$
- $b = -2$
- $c = -6$
#### Step 2: Plug the values into the quadratic formula
$$
x = \dfrac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-6)}}{2(1)}
$$
Simplify:
$$
x = \dfrac{2 \pm \sqrt{4 + 24}}{2}
$$
$$
x = \dfrac{2 \pm \sqrt{28}}{2}
$$
#### Step 3: Simplify the square root
$$
x = \dfrac{2 \pm \sqrt{4 \cdot 7}}{2} = \dfrac{2 \pm 2\sqrt{7}}{2}
$$
Now simplify further by canceling out the common factor of $2$:
$$
x = 1 \pm \sqrt{7}
$$
#### Step 4: Write the factored form
The roots of the equation are:
$$
x = 1 + \sqrt{7} \quad \text{or} \quad x = 1 - \sqrt{7}
$$
Therefore, the factored form of the quadratic is:
$$
(x - (1 + \sqrt{7}))(x - (1 - \sqrt{7}))
$$
#### Final Answer:
The factored form of $x^2 - 2x - 6$ using the quadratic formula is:
$$
(x - (1 + \sqrt{7}))(x - (1 - \sqrt{7}))
$$
:::
## Question 3
Find all partition numbers for each function.
### a. $f(x)=\dfrac{3x+8}{x-4}$
::: spoiler
<summary> Solution: </summary>
### Find all partition numbers for the function:
$$f(x) = \dfrac{3x+8}{x-4}$$
#### Step 1: Find where the function is undefined
The function is undefined when the denominator equals zero. Set the denominator equal to zero:
$$
x - 4 = 0
$$
Solve for $x$:
$$
x = 4
$$
Thus, $x = 4$ is a partition number because the function is undefined at this point.
#### Step 2: Find where the numerator equals zero
The function may have zeros where the numerator equals zero. Set the numerator equal to zero:
$$
3x + 8 = 0
$$
Solve for $x$:
$$
3x = -8
$$
$$
x = \dfrac{-8}{3}
$$
#### Step 3: Conclusion
The partition numbers for the function $f(x) = \dfrac{3x+8}{x-4}$ are:
$$
x = 4 \quad \text{(undefined)} \quad \text{and} \quad x = -\dfrac{8}{3} \quad \text{(zero of the function)}
$$
:::
### b. $f(x)=\dfrac{x^2+4x-45}{x^2+6x}$
::: spoiler
<summary> Solution: </summary>
### Find all partition numbers for the function:
$$f(x) = \dfrac{x^2 + 4x - 45}{x^2 + 6x}$$
#### Step 1: Find where the function is undefined
The function is undefined when the denominator equals zero. Set the denominator equal to zero:
$$
x^2 + 6x = 0
$$
Factor the denominator:
$$
x(x + 6) = 0
$$
Solve for $x$:
$$
x = 0 \quad \text{or} \quad x = -6
$$
Thus, $x = 0$ and $x = -6$ are partition numbers because the function is undefined at these points.
#### Step 2: Find where the numerator equals zero
The function may have zeros where the numerator equals zero. Set the numerator equal to zero:
$$
x^2 + 4x - 45 = 0
$$
Factor the numerator:
$$
(x - 5)(x + 9) = 0
$$
Solve for $x$:
$$
x = 5 \quad \text{or} \quad x = -9
$$
#### Step 3: Conclusion
The partition numbers for the function $f(x) = \dfrac{x^2 + 4x - 45}{x^2 + 6x}$ are:
- $x = 0$ (undefined)
- $x = -6$ (undefined)
- $x = 5$ (zero of the function)
- $x = -9$ (zero of the function)
:::
## Question 4
Use the sign chart to solve the inequality. Express answer in inequality and interval notation.
$f(x)=\dfrac{x-4}{x^2+2x}<0$
::: spoiler
<summary> Solution: </summary>
### Solve the inequality:
$$f(x) = \dfrac{x - 4}{x^2 + 2x} < 0$$
#### Step 1: Find partition numbers
To create the sign chart, we first need to find where the expression equals zero or is undefined.
1. **Numerator**: The numerator is $x - 4$. Set it equal to zero:
$$
x - 4 = 0 \quad \Rightarrow \quad x = 4
$$
2. **Denominator**: The denominator is $x^2 + 2x$. Set it equal to zero:
$$
x(x + 2) = 0 \quad \Rightarrow \quad x = 0 \quad \text{or} \quad x = -2
$$
So, the partition numbers are $x = 4$, $x = 0$, and $x = -2$.
#### Step 2: Create intervals
Using the partition numbers $x = -2$, $x = 0$, and $x = 4$, we can split the number line into the following intervals:
- $(-\infty, -2)$
- $(-2, 0)$
- $(0, 4)$
- $(4, \infty)$
#### Step 3: Test each interval
We now test a value from each interval to determine if $f(x) < 0$ (negative) or $f(x) > 0$ (positive).
- **Interval $(-\infty, -2)$**: Pick $x = -3$:
$$
f(-3) = \dfrac{-3 - 4}{(-3)^2 + 2(-3)} = \dfrac{-7}{9 - 6} = \dfrac{-7}{3} < 0
$$
So, $f(x) < 0$ in $(-\infty, -2)$.
- **Interval $(-2, 0)$**: Pick $x = -1$:
$$
f(-1) = \dfrac{-1 - 4}{(-1)^2 + 2(-1)} = \dfrac{-5}{1 - 2} = \dfrac{-5}{-1} = 5 > 0
$$
So, $f(x) > 0$ in $(-2, 0)$.
- **Interval $(0, 4)$**: Pick $x = 2$:
$$
f(2) = \dfrac{2 - 4}{(2)^2 + 2(2)} = \dfrac{-2}{4 + 4} = \dfrac{-2}{8} = -\dfrac{1}{4} < 0
$$
So, $f(x) < 0$ in $(0, 4)$.
- **Interval $(4, \infty)$**: Pick $x = 5$:
$$
f(5) = \dfrac{5 - 4}{(5)^2 + 2(5)} = \dfrac{1}{25 + 10} = \dfrac{1}{35} > 0
$$
So, $f(x) > 0$ in $(4, \infty)$.
| Interval | Test Point | $f(x)$ Sign |
|---------------|------------|-------------|
| $(-\infty, -2)$ | $x = -3$ | Negative |
| $(-2, 0)$ | $x = -1$ | Positive |
| $(0, 4)$ | $x = 2$ | Negative |
| $(4, \infty)$ | $x = 5$ | Positive |
#### Step 4: Identify where $f(x) < 0$
From the sign chart, we see that $f(x) < 0$ in the intervals $(-\infty, -2)$ and $(0, 4)$.
#### Step 5: Express the solution in inequality and interval notation
The solution to the inequality $f(x) = \dfrac{x - 4}{x^2 + 2x} < 0$ is:
- **Inequality notation**:
$$
x<-2 \quad \text{or} \quad 0 < x < 4
$$
- **Interval notation**:
$$
(-\infty, -2) \cup (0, 4)
$$
:::