[TOC] # Question 1: A company manufactures electrical drills, the price–demand and cost function are given by $$x = 500 - \dfrac{p}{2}$$ $$C(x) = 10,000 + 200x$$ ## a. Find the revenue function R(x) and its domain. <details> <summary> Solution: </summary> The revenue function is given by the product of price per unit, $p$, and the number of units sold, $x$: - First, solve for $p$ from the demand equation: $$x = 500 - \dfrac{p}{2}$$ $$p = 1000 - 2x$$ - The revenue function $R(x)$ is: $$R(x) = p \cdot x = (1000 - 2x) \cdot x$$ $$R(x) = 1000x - 2x^2$$ ### Domain: Since the demand function is linear, the maximum value of $x$ occurs when $p = 0$. So, set $p = 0$ in the price–demand equation: $$0 = 1000 - 2x \quad \Rightarrow \quad x = 500$$ Thus, the domain of $R(x)$ is $[0, 500]$. </details> ## b. Find the profit function P(x) and its domain. <details> <summary> Solution: </summary> The profit function is given by: $$P(x) = R(x) - C(x)$$ - We already have $R(x) = 1000x - 2x^2$ and $C(x) = 10,000 + 200x$, so: $$P(x) = (1000x - 2x^2) - (10,000 + 200x)$$ $$P(x) = 1000x - 2x^2 - 10,000 - 200x$$ $$P(x) = -2x^2 + 800x - 10,000$$ ### Domain: The domain of $P(x)$ is the same as the domain of $R(x)$, which is $[0, 500]$. </details> ## c. Find the production level that maximizes the profit, the maximum profit, and the price that the company should charge for an electrical drill. <details> <summary> Solution: </summary> To maximize profit, we need to find the critical points of $P(x)$ by taking its derivative and setting it equal to zero. - The derivative of $P(x)$ is: $$P'(x) = -4x + 800$$ - Set $P'(x) = 0$ to find the critical points: $$-4x + 800 = 0$$ $$x = 200$$ - To confirm that this value of $x$ maximizes profit, take the second derivative: $$P''(x) = -4$$ Since $P''(x) < 0$, $x = 200$ is indeed a maximum. ### Maximum profit: Substitute $x = 200$ into the profit function $P(x)$: $$P(200) = -2(200)^2 + 800(200) - 10,000$$ $$P(200) = -80,000 + 160,000 - 10,000$$ $$P(200) = 70,000$$ ### Price per drill: Substitute $x = 200$ into the price-demand equation: $$p = 1000 - 2(200)$$ $$p = 1000 - 400$$ $$p = 600$$ Thus, the company should produce 200 units, the maximum profit is $70,000, and the price per drill should be $600. </details> # Question 2: A car rental agency rents 400 cars per day at a rate of $80 per day. For each $10 price increase, 30 less cars are rented. At what daily rate should cars be rented to maximimize revenue. What is the maximum daily revenue? <details> <summary> Solution: </summary> Let the rate per day be represented by $x$, where the initial rate is $80. Then we can analyze the problem in the following way: 1. **Define the daily rate and cars rented as functions of $x$:** - The initial daily rate is $80, so for every increase of $10, the rate becomes $80 + 10x$, where $x$ is the number of $10 increments. - Initially, 400 cars are rented. For every $10 increase, 30 fewer cars are rented, so the number of cars rented per day is: $$400 - 30x$$ 2. **Revenue function:** The revenue $R(x)$ can be calculated by multiplying the rate per day by the number of cars rented: $$R(x) = (80 + 10x)(400 - 30x)$$ 3. **Expand and simplify $R(x)$:** Expanding and simplifying the expression, we get: $$R(x) = 32000 + 4000x - 2400x - 300x^2$$ $$R(x) = -300x^2 + 1600x + 32000$$ 4. **Take the derivative of $R(x)$ with respect to $x$ and set it equal to zero:** To find the maximum revenue, we take the derivative $R'(x)$ and set it equal to zero: $$R'(x) = -600x + 1600$$ Setting $R'(x) = 0$: $$-600x + 1600 = 0$$ $$600x = 1600$$ $$x = \frac{1600}{600} = \frac{8}{3} \approx 2.67$$ 5. **Calculate the rate and maximum revenue:** - Substitute $x = 2.67$ into the rate function: $$\text{Rate} = 80 + 10 \cdot 2.67 \approx 106.7$$ - Substitute $x = 2.67$ into the revenue function to get the maximum revenue: $$R(2.67) \approx 34133.33$$ Therefore, the optimal daily rate to maximize revenue is approximately $106.67, and the maximum daily revenue is about $34,133.33. </details> # Question 3: Calculate the following definite integrals ## a. $$ \displaystyle \int_1^3 x \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^3 x \, dx$$ 1. Antiderivative: $$F(x) = \frac{x^2}{2}$$ 2. Evaluate $F(b)$ at $b = 3$: $$F(3) = \frac{3^2}{2} = \frac{9}{2}$$ 3. Evaluate $F(a)$ at $a = 1$: $$F(1) = \frac{1^2}{2} = \frac{1}{2}$$ 4. Subtract $F(b) - F(a)$: $$F(3) - F(1) = \frac{9}{2} - \frac{1}{2} = \frac{8}{2} = 4$$ Final Answer: $$\int_1^3 x \, dx = 4$$ </details> ## b. $$ \displaystyle \int_{-1}^2 x(1 - x) \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_{-1}^2 x(1 - x) \, dx$$ 1. Expand the integrand: $$x(1 - x) = x - x^2$$ 2. Antiderivative: $$F(x) = \frac{x^2}{2} - \frac{x^3}{3}$$ 3. Evaluate $F(b)$ at $b = 2$: $$F(2) = \frac{2^2}{2} - \frac{2^3}{3} = \frac{4}{2} - \frac{8}{3} = 2 - \frac{8}{3} = \frac{6}{3} - \frac{8}{3} = -\frac{2}{3}$$ 4. Evaluate $F(a)$ at $a = -1$: $$F(-1) = \frac{(-1)^2}{2} - \frac{(-1)^3}{3} = \frac{1}{2} - \frac{-1}{3} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$ 5. Subtract $F(b) - F(a)$: $$F(2) - F(-1) = -\frac{2}{3} - \frac{5}{6} = -\frac{4}{6} - \frac{5}{6} = -\frac{9}{6} = -\frac{3}{2}$$ Final Answer: $$\int_{-1}^2 x(1 - x) \, dx = -\frac{3}{2}$$ </details> ## c. $$ \displaystyle \int_{-1}^5 (7x - 3x^3) \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_{-1}^5 (7x - 3x^3) \, dx$$ 1. Antiderivative: $$F(x) = \frac{7x^2}{2} - \frac{3x^4}{4}$$ 2. Evaluate $F(b)$ at $b = 5$: $$F(5) = \frac{7(5)^2}{2} - \frac{3(5)^4}{4} = \frac{7 \cdot 25}{2} - \frac{3 \cdot 625}{4} = \frac{175}{2} - \frac{1875}{4}$$ $$F(5) = \frac{350}{4} - \frac{1875}{4} = \frac{-1525}{4}$$ 3. Evaluate $F(a)$ at $a = -1$: $$F(-1) = \frac{7(-1)^2}{2} - \frac{3(-1)^4}{4} = \frac{7 \cdot 1}{2} - \frac{3 \cdot 1}{4} = \frac{7}{2} - \frac{3}{4}$$ $$F(-1) = \frac{14}{4} - \frac{3}{4} = \frac{11}{4}$$ 4. Subtract $F(b) - F(a)$: $$F(5) - F(-1) = \frac{-1525}{4} - \frac{11}{4} = \frac{-1525 - 11}{4} = \frac{-1536}{4} = -384$$ Final Answer: $$\int_{-1}^5 (7x - 3x^3) \, dx = -384$$ </details> ## d. $$ \displaystyle \int_{-2}^2 (3x + 4x^3) \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_{-2}^2 (3x + 4x^3) \, dx$$ 1. Antiderivative: $$F(x) = \frac{3x^2}{2} + \frac{4x^4}{4} = \frac{3x^2}{2} + x^4$$ 2. Evaluate $F(b)$ at $b = 2$: $$F(2) = \frac{3(2)^2}{2} + (2)^4 = \frac{3 \cdot 4}{2} + 16 = 6 + 16 = 22$$ 3. Evaluate $F(a)$ at $a = -2$: $$F(-2) = \frac{3(-2)^2}{2} + (-2)^4 = \frac{3 \cdot 4}{2} + 16 = 6 + 16 = 22$$ 4. Subtract $F(b) - F(a)$: $$F(2) - F(-2) = 22 - 22 = 0$$ Final Answer: $$\int_{-2}^2 (3x + 4x^3) \, dx = 0$$ </details> ## e. $$ \displaystyle \int_1^3 \frac{1}{x} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^3 \frac{1}{x} \, dx$$ 1. Antiderivative: $$F(x) = \ln|x|$$ 2. Evaluate $F(b)$ at $b = 3$: $$F(3) = \ln|3| = \ln(3)$$ 3. Evaluate $F(a)$ at $a = 1$: $$F(1) = \ln|1| = \ln(1) = 0$$ 4. Subtract $F(b) - F(a)$: $$F(3) - F(1) = \ln(3) - 0 = \ln(3)$$ Final Answer: $$\int_1^3 \frac{1}{x} \, dx = \ln(3)$$ </details> ## f. $$ \displaystyle \int_1^3 (-2x^2) \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^3 (-2x^2) \, dx$$ 1. Antiderivative: $$F(x) = -\frac{2x^3}{3}$$ 2. Evaluate $F(b)$ at $b = 3$: $$F(3) = -\frac{2(3)^3}{3} = -\frac{2 \cdot 27}{3} = -18$$ 3. Evaluate $F(a)$ at $a = 1$: $$F(1) = -\frac{2(1)^3}{3} = -\frac{2 \cdot 1}{3} = -\frac{2}{3}$$ 4. Subtract $F(b) - F(a)$: $$F(3) - F(1) = -18 - \left(-\frac{2}{3}\right) = -18 + \frac{2}{3} = -\frac{54}{3} + \frac{2}{3} = -\frac{52}{3}$$ Final Answer: $$\int_1^3 (-2x^2) \, dx = -\frac{52}{3}$$ </details> ## g. $$ \displaystyle \int_1^2 \frac{1}{x^3} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^2 \frac{1}{x^3} \, dx$$ 1. Rewrite the integrand: $$\frac{1}{x^3} = x^{-3}$$ 2. Antiderivative: $$F(x) = \frac{x^{-2}}{-2} = -\frac{1}{2x^2}$$ 3. Evaluate $F(b)$ at $b = 2$: $$F(2) = -\frac{1}{2(2)^2} = -\frac{1}{2 \cdot 4} = -\frac{1}{8}$$ 4. Evaluate $F(a)$ at $a = 1$: $$F(1) = -\frac{1}{2(1)^2} = -\frac{1}{2}$$ 5. Subtract $F(b) - F(a)$: $$F(2) - F(1) = -\frac{1}{8} - \left(-\frac{1}{2}\right) = -\frac{1}{8} + \frac{1}{2} = -\frac{1}{8} + \frac{4}{8} = \frac{3}{8}$$ Final Answer: $$\int_1^2 \frac{1}{x^3} \, dx = \frac{3}{8}$$ </details> ## h. $$ \displaystyle \int_1^9 \sqrt{x} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^9 \sqrt{x} \, dx$$ 1. Rewrite the integrand: $$\sqrt{x} = x^{1/2}$$ 2. Antiderivative: $$F(x) = \frac{x^{3/2}}{3/2} = \frac{2}{3}x^{3/2}$$ 3. Evaluate $F(b)$ at $b = 9$: $$F(9) = \frac{2}{3}(9)^{3/2} = \frac{2}{3} \cdot (9^{1/2})^3 = \frac{2}{3} \cdot (3)^3 = \frac{2}{3} \cdot 27 = 18$$ 4. Evaluate $F(a)$ at $a = 1$: $$F(1) = \frac{2}{3}(1)^{3/2} = \frac{2}{3} \cdot 1 = \frac{2}{3}$$ 5. Subtract $F(b) - F(a)$: $$F(9) - F(1) = 18 - \frac{2}{3} = \frac{54}{3} - \frac{2}{3} = \frac{52}{3}$$ Final Answer: $$\int_1^9 \sqrt{x} \, dx = \frac{52}{3}$$ </details> ## i. $$ \displaystyle \int_1^9 \frac{1}{\sqrt{x}} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^9 \frac{1}{\sqrt{x}} \, dx$$ 1. Rewrite the integrand: $$\frac{1}{\sqrt{x}} = x^{-1/2}$$ 2. Antiderivative: $$F(x) = \frac{x^{1/2}}{1/2} = 2x^{1/2} = 2\sqrt{x}$$ 3. Evaluate $F(b)$ at $b = 9$: $$F(9) = 2\sqrt{9} = 2 \cdot 3 = 6$$ 4. Evaluate $F(a)$ at $a = 1$: $$F(1) = 2\sqrt{1} = 2 \cdot 1 = 2$$ 5. Subtract $F(b) - F(a)$: $$F(9) - F(1) = 6 - 2 = 4$$ Final Answer: $$\int_1^9 \frac{1}{\sqrt{x}} \, dx = 4$$ </details> ## j. $$ \displaystyle \int_1^{16} \frac{3 - x}{\sqrt{x}} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral: $$\int_1^{16} \frac{3 - x}{\sqrt{x}} \, dx$$ 1. Rewrite the integrand: $$\frac{3 - x}{\sqrt{x}} = \frac{3}{\sqrt{x}} - \frac{x}{\sqrt{x}} = 3x^{-1/2} - x^{1/2}$$ 2. Antiderivative: For $3x^{-1/2}$: $$\int 3x^{-1/2} \, dx = 3 \cdot 2x^{1/2} = 6\sqrt{x}$$ For $x^{1/2}$: $$\int x^{1/2} \, dx = \frac{2}{3}x^{3/2}$$ Combine: $$F(x) = 6\sqrt{x} - \frac{2}{3}x^{3/2}$$ 3. Evaluate $F(b)$ at $b = 16$: $$F(16) = 6\sqrt{16} - \frac{2}{3}(16)^{3/2}$$ $$F(16) = 6 \cdot 4 - \frac{2}{3}(4^3)$$ $$F(16) = 24 - \frac{2}{3} \cdot 64$$ $$F(16) = 24 - \frac{128}{3}$$ $$F(16) = \frac{72}{3} - \frac{128}{3} = \frac{-56}{3}$$ 4. Evaluate $F(a)$ at $a = 1$: $$F(1) = 6\sqrt{1} - \frac{2}{3}(1)^{3/2}$$ $$F(1) = 6 \cdot 1 - \frac{2}{3} \cdot 1$$ $$F(1) = 6 - \frac{2}{3}$$ $$F(1) = \frac{18}{3} - \frac{2}{3} = \frac{16}{3}$$ 5. Subtract $F(b) - F(a)$: $$F(16) - F(1) = \frac{-56}{3} - \frac{16}{3}$$ $$F(16) - F(1) = \frac{-56 - 16}{3} = \frac{-72}{3} = -24$$ Final Answer: $$\int_1^{16} \frac{3 - x}{\sqrt{x}} \, dx = -24$$ </details> # Question 4: Use the method of substitution to calculate the following definite integrals. ## a. $$ \displaystyle \int_0^1 (x + 1)^5 \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral using $u$-substitution: $$\int_0^1 (x + 1)^5 \, dx$$ 1. $u = x + 1$ 2. $\frac{du}{dx} = 1$ 3. $du = dx$ 4. $dx = du$ 5. Substitute and simplify: $$\int_0^1 (x + 1)^5 \, dx = \int (u)^5 \, du$$ 6. Integrate: $$\int u^5 \, du = \frac{u^6}{6}$$ 7. Plug back in for $u$ and find the antiderivative $F(x)$: $$F(x) = \frac{(x + 1)^6}{6}$$ 8. Evaluate $F(b)$ at $b = 1$: $$F(1) = \frac{(1 + 1)^6}{6} = \frac{2^6}{6} = \frac{64}{6} = \frac{32}{3}$$ 9. Evaluate $F(a)$ at $a = 0$: $$F(0) = \frac{(0 + 1)^6}{6} = \frac{1^6}{6} = \frac{1}{6}$$ 10. Subtract $F(b) - F(a)$: $$F(1) - F(0) = \frac{32}{3} - \frac{1}{6} = \frac{64}{6} - \frac{1}{6} = \frac{63}{6} = \frac{21}{2}$$ Final Answer: $$\int_0^1 (x + 1)^5 \, dx = \frac{21}{2}$$ </details> ## b. $$ \displaystyle \int_{-1}^2 \frac{1}{x + 2} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral using $u$-substitution: $$\int_{-1}^2 \frac{1}{x + 2} \, dx$$ 1. $u = x + 2$ 2. $\frac{du}{dx} = 1$ 3. $du = dx$ 4. $dx = du$ 5. Substitute and simplify: $$\int_{-1}^2 \frac{1}{x + 2} \, dx = \int \frac{1}{u} \, du$$ 6. Integrate: $$\int \frac{1}{u} \, du = \ln|u|$$ 7. Plug back in for $u$ and find the antiderivative $F(x)$: $$F(x) = \ln|x + 2|$$ 8. Evaluate $F(b)$ at $b = 2$: $$F(2) = \ln|2 + 2| = \ln(4)$$ 9. Evaluate $F(a)$ at $a = -1$: $$F(-1) = \ln|-1 + 2| = \ln(1) = 0$$ 10. Subtract $F(b) - F(a)$: $$F(2) - F(-1) = \ln(4) - 0 = \ln(4)$$ Final Answer: $$\int_{-1}^2 \frac{1}{x + 2} \, dx = \ln(4)$$ </details> ## c. $$ \displaystyle \int_0^5 (1 + 2x^2)^2 x \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral using $u$-substitution: $$\int_0^5 (1 + 2x^2)^2 x \, dx$$ 1. $u = 1 + 2x^2$ 2. $\frac{du}{dx} = 4x$ 3. $du = 4x \, dx$ 4. $dx = \frac{du}{4x}$ 5. Substitute and simplify: $$\int_0^5 (1 + 2x^2)^2 x \, dx = \int u^2 \cdot \frac{du}{4}$$ $$= \frac{1}{4} \int u^2 \, du$$ 6. Integrate: $$\int u^2 \, du = \frac{u^3}{3}$$ $$\frac{1}{4} \int u^2 \, du = \frac{1}{4} \cdot \frac{u^3}{3} = \frac{u^3}{12}$$ 7. Plug back in for $u$ and find the antiderivative $F(x)$: $$F(x) = \frac{(1 + 2x^2)^3}{12}$$ 8. Evaluate $F(b)$ at $b = 5$: $$F(5) = \frac{(1 + 2(5)^2)^3}{12} = \frac{(1 + 2 \cdot 25)^3}{12} = \frac{(1 + 50)^3}{12} = \frac{51^3}{12}$$ $$51^3 = 132651 \quad \text{so} \quad F(5) = \frac{132651}{12} = 11054.25$$ 9. Evaluate $F(a)$ at $a = 0$: $$F(0) = \frac{(1 + 2(0)^2)^3}{12} = \frac{(1 + 0)^3}{12} = \frac{1}{12}$$ 10. Subtract $F(b) - F(a)$: $$F(5) - F(0) = 11054.25 - \frac{1}{12}$$ $$= 11054.25 - 0.0833 = 11054.1667$$ Final Answer: $$\int_0^5 (1 + 2x^2)^2 x \, dx = 11054.1667$$ </details> ## d. $$ \displaystyle \int_0^2 e^{x^2}x \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral using $u$-substitution: $$\int_0^2 e^{x^2}x \, dx$$ 1. $u = x^2$ 2. $\frac{du}{dx} = 2x$ 3. $du = 2x \, dx$ 4. $dx = \frac{du}{2x}$ 5. Substitute and simplify: $$\int_0^2 e^{x^2}x \, dx = \int e^u \cdot \frac{1}{2} \, du$$ $$= \frac{1}{2} \int e^u \, du$$ 6. Integrate: $$\int e^u \, du = e^u$$ $$\frac{1}{2} \int e^u \, du = \frac{1}{2} e^u$$ 7. Plug back in for $u$ and find the antiderivative $F(x)$: $$F(x) = \frac{1}{2} e^{x^2}$$ 8. Evaluate $F(b)$ at $b = 2$: $$F(2) = \frac{1}{2} e^{2^2} = \frac{1}{2} e^4$$ 9. Evaluate $F(a)$ at $a = 0$: $$F(0) = \frac{1}{2} e^{0^2} = \frac{1}{2} e^0 = \frac{1}{2}$$ 10. Subtract $F(b) - F(a)$: $$F(2) - F(0) = \frac{1}{2} e^4 - \frac{1}{2}$$ $$= \frac{1}{2} (e^4 - 1)$$ Final Answer: $$\int_0^2 e^{x^2}x \, dx = \frac{1}{2} (e^4 - 1)$$ </details> ## e. $$ \displaystyle \int_1^3 x \sqrt{x + 2} \, dx $$ <details> <summary> Solution: </summary> To solve the definite integral using $u$-substitution: $$\int_1^3 x \sqrt{x + 2} \, dx$$ 1. $u = x + 2$ 2. $\frac{du}{dx} = 1$ 3. $du = dx$ 4. Rewrite $x$ in terms of $u$: $$x = u - 2$$ 5. Substitute and simplify: $$\int_1^3 x \sqrt{x + 2} \, dx = \int (u - 2) \sqrt{u} \, du$$ $$= \int u^{3/2} \, du - \int 2u^{1/2} \, du$$ 6. Integrate each term: For $\int u^{3/2} \, du$: $$\int u^{3/2} \, du = \frac{2}{5} u^{5/2}$$ For $\int 2u^{1/2} \, du$: $$\int 2u^{1/2} \, du = 2 \cdot \frac{2}{3} u^{3/2} = \frac{4}{3} u^{3/2}$$ Combine: $$\int (u - 2) \sqrt{u} \, du = \frac{2}{5} u^{5/2} - \frac{4}{3} u^{3/2}$$ 7. Plug back in for $u$: $$F(x) = \frac{2}{5} (x + 2)^{5/2} - \frac{4}{3} (x + 2)^{3/2}$$ 8. Evaluate $F(b)$ at $b = 3$: $$F(3) = \frac{2}{5} (3 + 2)^{5/2} - \frac{4}{3} (3 + 2)^{3/2} =\dfrac{10\sqrt{5}}{3}$$ 9. Evaluate $F(a)$ at $a = 1$: $$F(1) = \frac{2}{5} (1 + 2)^{5/2} - \frac{4}{3} (1 + 2)^{3/2}=-\dfrac{2\sqrt{3}}{5}$$ 10. Subtract $F(b) - F(a)$: $$F(3) - F(1) = \dfrac{10\sqrt{5}}{3}- \left(-\dfrac{2\sqrt{3}}{5}\right)=\dfrac{10\sqrt{5}}{3}+\dfrac{2\sqrt{3}}{5}$$ Final Answer: $$\int_1^3 x \sqrt{x + 2} \, dx = \dfrac{10\sqrt{5}}{3}+\dfrac{2\sqrt{3}}{5}$$ </details> ## f. $$ \displaystyle \int_1^3 \frac{(\ln(x))^3}{x} \, dx $$ <details> <summary> Solution: </summary> 1. Let $u = \ln(x)$. 2. $\frac{du}{dx} = \frac{1}{x}$. 3. $du = \frac{1}{x} dx$. 4. $dx = x \, du = du$. 5. Substitute into the integral: $$ \int_1^3 \frac{(\ln(x))^3}{x} \, dx = \int (\ln(x))^3 \cdot \frac{1}{x} dx = \int u^3 \, du $$ 6. Integrate: $$ \int u^3 \, du = \frac{u^4}{4} $$ 7. Rewrite the antiderivative in terms of $x$: $$ \frac{u^4}{4} = \frac{(\ln(x))^4}{4} $$ 8. Plug in the upper bound $x = 3$: $$ F(3) = \frac{(\ln(3))^4}{4} $$ 9. Plug in the lower bound $x = 1$: $$ F(1) = \frac{(\ln(1))^4}{4} = \frac{0^4}{4} = 0 $$ 10. Subtract: $$ F(3) - F(1) = \frac{(\ln(3))^4}{4} - 0 $$ 11. Final Answer: $$ \int_1^3 \frac{(\ln(x))^3}{x} \, dx = \frac{(\ln(3))^4}{4} $$ </details> # Question 5 : The graph of $f(x)$ is given below with the areas. ![image](https://hackmd.io/_uploads/SJxLcZtGyg.png) ## a. Find $\displaystyle \int_{-3}^{-1} f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{-3}^{-1} f(x) \, dx=5.33$ </details> ## b. Find $\displaystyle \int_{-1}^2 f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{-1}^2 f(x) \, dx=-15.75$ </details> ## c. Find $\displaystyle \int_{2}^3 f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{2}^3 f(x) \, dx=10.42$ </details> ## d. Find $\displaystyle \int_{-3}^2 f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{-3}^2 f(x) \, dx=5.33-15.75=-10.42$ </details> ## e. Find $\displaystyle \int_{-3}^{-1} 4 f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{-3}^{-1} 4 f(x) \, dx=$\displaystyle 4\int_{-3}^{-1} f(x) \, dx=4(5.33)=21.32$$ </details> ## f. Find $\displaystyle \int_{-1}^{-3} f(x) \, dx$ <details> <summary> Solution: </summary> $\displaystyle \int_{-1}^{-3} f(x) \, dx=\displaystyle -\int_{-3}^{-1} f(x) \, dx=-5.33$$ </details> # Question 6: The marginal cost to produce x tennis shoes is $$C'(x)=20+\dfrac{1000}{x+1}$$ If the fixed cost are $100,000, find the cost function and the cost to produce 5,000 shoes. <details> <summary> Solution: </summary> The marginal cost function is: $$ C'(x) = 20 + \frac{1000}{x+1} $$ The fixed costs are $100,000. ### Step-by-Step Solution 1. Rewrite the marginal cost function for integration: $$ C'(x) = 20 + \frac{1000}{x+1} $$ 2. Integrate $C'(x)$ to find the cost function $C(x)$: $$ C(x) = \int \left( 20 + \frac{1000}{x+1} \right) dx $$ 3. Separate the terms: $$ C(x) = \int 20 \, dx + \int \frac{1000}{x+1} \, dx $$ 4. Compute each integral: - For $\int 20 \, dx$: $$ \int 20 \, dx = 20x $$ - For $\int \frac{1000}{x+1} \, dx$: $$ \int \frac{1000}{x+1} \, dx = 1000 \ln|x+1| $$ 5. Combine the results: $$ C(x) = 20x + 1000 \ln|x+1| + C_0 $$ 6. Use the fixed costs to solve for $C_0$: At $x = 0$, $C(0) = 100,000$. Substituting: $$ 100,000 = 20(0) + 1000 \ln|0+1| + C_0 $$ $$ 100,000 = 0 + 1000 \ln(1) + C_0 $$ $$ 100,000 = 0 + C_0 $$ $$ C_0 = 100,000 $$ 7. The cost function is: $$ C(x) = 20x + 1000 \ln|x+1| + 100,000 $$ 8. Calculate the cost to produce 5,000 shoes ($x = 5000$): $$ C(5000) = 20(5000) + 1000 \ln(5000+1) + 100,000 $$ $$ C(5000) = 100,000 + 1000 \ln(5001) + 100,000 $$ $$ C(5000) = 200,000 + 1000 \ln(5001) $$ 9. Approximate $\ln(5001)$: $$ \ln(5001) \approx 8.517 $$ $$ C(5000) = 200,000 + 1000(8.517) $$ $$ C(5000) = 200,000 + 8,517 $$ $$ C(5000) = 208,517 $$ ### Final Results: The cost function is: $$ C(x) = 20x + 1000 \ln|x+1| + 100,000 $$ The cost to produce 5,000 shoes is: $$ C(5000) = 208,517 \, \text{dollars.} $$ </details> # Question 7: The marginal cost to produce x tennis shoes is $$C'(x)=20+\dfrac{1000}{(x+1)^2}$$ Find the cost function if it costs $30,000 to produce 999 tennis shoes. <details> <summary> Solution: </summary> ### Question 7: Solve for the Cost Function The marginal cost function is: $$ C'(x) = 20 + \frac{1000}{(x+1)^2} $$ We are given that it costs $30,000 to produce 999 tennis shoes. ### Step-by-Step Solution 1. Rewrite the marginal cost function for integration: $$ C'(x) = 20 + \frac{1000}{(x+1)^2} $$ 2. Integrate $C'(x)$ to find the cost function $C(x)$: $$ C(x) = \int \left( 20 + \frac{1000}{(x+1)^2} \right) dx $$ 3. Separate the terms: $$ C(x) = \int 20 \, dx + \int \frac{1000}{(x+1)^2} \, dx $$ 4. Compute each integral: - For $\int 20 \, dx$: $$ \int 20 \, dx = 20x $$ - For $\int \frac{1000}{(x+1)^2} \, dx$: Use the rule $\int \frac{1}{(x+1)^2} \, dx = -\frac{1}{x+1}$: $$ \int \frac{1000}{(x+1)^2} \, dx = -\frac{1000}{x+1} $$ 5. Combine the results: $$ C(x) = 20x - \frac{1000}{x+1} + C_0 $$ 6. Use the given information to solve for $C_0$: At $x = 999$, $C(999) = 30,000$. Substituting: $$ 30,000 = 20(999) - \frac{1000}{999+1} + C_0 $$ $$ 30,000 = 19,980 - \frac{1000}{1000} + C_0 $$ $$ 30,000 = 19,980 - 1 + C_0 $$ $$ 30,000 = 18,979 + C_0 $$ $$ C_0 = 30,000 - 18,979 = 11021 $$ 7. The cost function is: $$ C(x) = 20x - \frac{1000}{x+1} + 11,021 $$ ### Final Result The cost function is: $$ C(x) = 20x - \frac{1000}{x+1} + 11,021 $$ </details> # Question 8: The marginal cost to produce x tennis shoes is $$C'(x)=30+\dfrac{1000}{x+1}$$ Find the increase in production cost if the production is increased from 500 to 600 shoes. <details> <summary> Solution: </summary> ### Question: Increase in Production Cost The marginal cost function is: $$ C'(x) = 30 + \frac{1000}{x+1} $$ We need to find the increase in production cost if production increases from 500 to 600 shoes. ### Step-by-Step Solution 1. The increase in production cost is given by the definite integral of the marginal cost function: $$ \Delta C = \int_{500}^{600} C'(x) \, dx $$ Substitute $C'(x) = 30 + \frac{1000}{x+1}$: $$ \Delta C = \int_{500}^{600} \left(30 + \frac{1000}{x+1}\right) \, dx $$ 2. Separate the terms: $$ \Delta C = \int_{500}^{600} 30 \, dx + \int_{500}^{600} \frac{1000}{x+1} \, dx $$ 3. Compute each integral: - For $\int_{500}^{600} 30 \, dx$: $$ \int_{500}^{600} 30 \, dx = 30 \int_{500}^{600} 1 \, dx = 30[x]_{500}^{600} $$ $$ = 30(600 - 500) = 30 \cdot 100 = 3000 $$ - For $\int_{500}^{600} \frac{1000}{x+1} \, dx$: Use the rule $\int \frac{1}{x+1} \, dx = \ln|x+1|$: $$ \int_{500}^{600} \frac{1000}{x+1} \, dx = 1000 \int_{500}^{600} \frac{1}{x+1} \, dx $$ $$ = 1000 \left[\ln|x+1|\right]_{500}^{600} $$ $$ = 1000 \left(\ln(600+1) - \ln(500+1)\right) $$ $$ = 1000 \left(\ln(601) - \ln(501)\right) $$ Simplify using the logarithmic property $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$: $$ = 1000 \ln\left(\frac{601}{501}\right) $$ 4. Combine the results: $$ \Delta C = 3000 + 1000 \ln\left(\frac{601}{501}\right) $$ 5. Approximate $\ln\left(\frac{601}{501}\right)$: $$ \frac{601}{501} \approx 1.1996 \quad \text{and} \quad \ln(1.1996) \approx 0.1822 $$ Substitute this value: $$ \Delta C = 3000 + 1000(0.1822) $$ $$ \Delta C = 3000 + 182.2 = 3182.2 $$ ### Final Result The increase in production cost is approximately: $$ \Delta C = 3182.2 \, \text{dollars.} $$ </details>