# In-Class Activity 2.4 ## Question 1 Factor top and bottom completely, then cancel. ### a. $\dfrac{6x^3+6x^2-12x}{3x^2-3x}$ ::: spoiler <summary> Example: </summary> Simplify by factoring top and bottom, and then cancelling. $\dfrac{5 x^3 + 5 x^2 - 30 x}{2x^2-4x}$ The top factors as \begin{align} 5x^3+5x^2-30x&=5x(x^2+x-6) \\ &=5x(x+3)(x-2) \end{align} The bottom factors as \begin{align} 2x^2-4x&=2x(x-2) \end{align} Thus the fraction factors as the following: \begin{align} \dfrac{5 x^3 + 5 x^2 - 30 x}{2x^2-4x}&=\dfrac{5x(x+3)(x-2)}{2x(x-2)} \\ &=\dfrac{5(x+3)}{2} \end{align} Note the $(x-2)$ and $x$ canceled from top and bottom. #### Final Answer: $$\dfrac{5(x+3)}{2}$$ ::: ::: spoiler <summary> Solution: </summary> Simplify by factoring top and bottom, and then cancelling. $\dfrac{6x^3+6x^2-12x}{3x^2-3x}$ The top factors as \begin{align} 6x^3+6x^2-12x&=6x(x^2+x-2) \\ &=6x(x+2)(x-1) \end{align} The bottom factors as \begin{align} 3x^2-3x&=3x(x-1) \end{align} Thus the fraction factors as the following: \begin{align} \dfrac{6x^3+6x^2-12x}{3x^2-3x}&=\dfrac{6x(x+2)(x-1)}{3x(x-1)} \\ &=2(x+2) \end{align} Note the $(x-1)$ and $x$ and 3 canceled from top and bottom. #### Final Answer: $$2(x+2)$$ ::: ### b. $\dfrac{2x^3+10x^2-12x}{x^3-2x^2-3x}$ ::: spoiler <summary> Example: </summary> Simplify by factoring top and bottom, and then cancelling. $\dfrac{3x^3 + 9x^2 - 12x}{x^3 - 3x^2 - 4x} $ The top factors as \begin{align} 3x^3 + 9x^2 - 12x&=3x(x^2+3x-4) \\ &=3x(x+4)(x-1) \end{align} The bottom factors as \begin{align} x^3 - 3x^2 - 4x&=x(x^2-3x-4) \\ &=x(x-4)(x+1) \end{align} Thus the fraction factors as the following: \begin{align} \dfrac{3x^3 + 9x^2 - 12x}{x^3 - 3x^2 - 4x}&=\dfrac{3x(x+4)(x-1)}{x(x-4)(x+1)} \\ &=\dfrac{3(x+4)(x-1)}{(x-4)(x+1)} \end{align} Note only the $x$ canceled from top and bottom. #### Final Answer: $$\dfrac{3(x+4)(x-1)}{(x-4)(x+1)}$$ ::: ::: spoiler <summary> Solution: </summary> Simplify by factoring top and bottom, and then cancelling. $\dfrac{2x^3+10x^2-12x}{x^3-2x^2-3x}$ The top factors as \begin{align} 2x^3+10x^2-12x&=2x(x^2+5x-6) \\ &=2x(x+6)(x-1) \end{align} The bottom factors as \begin{align} x^3-2x^2-3x&=x(x^2-2x-3) \\ &=x(x-3)(x+1) \end{align} Thus the fraction factors as the following: \begin{align} \dfrac{3x^3 + 9x^2 - 12x}{x^3 - 3x^2 - 4x}&=\dfrac{2x(x+6)(x-1)}{x(x-3)(x+1)} \\ &=\dfrac{2(x+6)(x-1)}{(x-3)(x+1)} \end{align} Note only the $x$ canceled from top and bottom. #### Final Answer: $$\dfrac{2(x+6)(x-1)}{(x-3)(x+1)}$$ ::: ## Question 2 Substitute, expand, and combine terms. ### a. $f(x)=2x^2+2x+4$ ; $f(x+h)-f(x)$ ::: spoiler <summary> Example: </summary> $f(x)=3x^2+4x+5$ ; $f(x+h)-f(x)$ First we find and simplify $f(x+h)$: \begin{align} f(x+h)&=3(x+h)^2+4(x+h)+5 \\ &=3(x+h)(x+h)+4(x+h)+5 \\ &=3(x^2+xh+xh+h^2) +4x+4h+5 \\ &=3(x^2+2xh+h^2)+4x+4h+5 \\ &=3x^2+6xh+3h^2+4x+4h+5 \end{align} Then $f(x+h)-f(x)$: \begin{align} f(x+h)-f(x)&=3x^2+6xh+3h^2+4x+4h+5-(3x^2+4x+5) \\ &=3x^2+6xh+3h^2+4x+4h+5-3x^2-4x-5 \\ &=6xh+3h^2+4h \end{align} #### Final Answer: $$6xh+3h^2+4h$$ ::: ::: spoiler <summary> Solution: </summary> $f(x)=2x^2+2x+4$ ; $f(x+h)-f(x)$ First we find and simplify $f(x+h)$: \begin{align} f(x+h)&=2(x+h)^2+2(x+h)+4 \\ &=2(x^2+2xh+h^2)+2x+2h+4 \\ &=2x^2+4xh+2h^2+2x+2h+4 \end{align} Then $f(x+h)-f(x)$: \begin{align} f(x+h)-f(x)&=2x^2+4xh+2h^2+2x+2h+4-(2x^2+2x+4) \\ &=2x^2+4xh+2h^2+2x+2h+4-2x^2-2x-4 \\ &=4xh+2h^2+2h \end{align} #### Final Answer: $$4xh+2h^2+2h$$ ::: ### b. $g(x)=-x^2+2x+5$ ; $g(x+h)-g(x)$ ::: spoiler <summary> Example: </summary> Let $g(x) = -2x^2 + 3x + 4$. Now find $g(x+h) - g(x)$. First, we find and simplify $g(x+h)$: \begin{align} g(x+h) &= -2(x+h)^2 + 3(x+h) + 4 \\ &= -2(x+h)(x+h) + 3(x+h) + 4 \\ &= -2(x^2 + 2xh + h^2) + 3x + 3h + 4 \\ &= -2x^2 - 4xh - 2h^2 + 3x + 3h + 4 \end{align} Now, subtract $g(x)$ from $g(x+h)$: \begin{align} g(x+h) - g(x) &= \left(-2x^2 - 4xh - 2h^2 + 3x + 3h + 4\right) - \left(-2x^2 + 3x + 4\right) \\ &= -2x^2 - 4xh - 2h^2 + 3x + 3h + 4 + 2x^2 - 3x - 4 \\ &= -4xh - 2h^2 + 3h \end{align} #### Final Answer: $$-4xh - 2h^2 + 3h$$ ::: ::: spoiler <summary> Solution: </summary> $g(x)=-x^2+2x+5$ ; $g(x+h)-g(x)$ First, we find and simplify $g(x+h)$: \begin{align} g(x+h) &= -(x+h)^2+2(x+h)+5 \\ &=-(x^2+2xh+h^2)+2x+2h+5 \\ &=-x^2-2xh-h^2+2x+2h+5 \\ \end{align} Now, subtract $g(x)$ from $g(x+h)$: \begin{align} g(x+h) - g(x) &= \left(-x^2-2xh-h^2+2x+2h+5\right) - \left(-x^2+2x+5\right) \\ &= -x^2-2xh-h^2+2x+2h+5+x^2-2x-5 \\ &= -2xh-h^2+2h \end{align} #### Final Answer: $$-2xh-h^2+2h$$ ::: ### c. $k(x)=6x^2-2x+3$ ; $k(x+h)-k(x)$ ::: spoiler <summary> Example: </summary> Let $k(x) = 5x^2 - 4x + 2$. Now find $k(x+h) - k(x)$. First, we find and simplify $k(x+h)$: \begin{align} k(x+h) &= 5(x+h)^2 - 4(x+h) + 2 \\ &= 5(x+h)(x+h) - 4(x+h) + 2 \\ &= 5(x^2 + 2xh + h^2) - 4x - 4h + 2 \\ &= 5x^2 + 10xh + 5h^2 - 4x - 4h + 2 \end{align} Now, subtract $k(x)$ from $k(x+h)$: \begin{align} k(x+h) - k(x) &= \left(5x^2 + 10xh + 5h^2 - 4x - 4h + 2\right) - \left(5x^2 - 4x + 2\right) \\ &= 5x^2 + 10xh + 5h^2 - 4x - 4h + 2 - 5x^2 + 4x - 2 \\ &= 10xh + 5h^2 - 4h \end{align} #### Final Answer: $$10xh + 5h^2 - 4h$$ ::: ::: spoiler <summary> Solution: </summary> First, we find and simplify $k(x+h)$: \begin{align} k(x+h) &= 6(x+h)^2 - 2(x+h) + 3 \\ &= 6(x+h)(x+h) - 2(x+h) + 3 \\ &= 6(x^2 + 2xh + h^2) - 2(x+h) + 3 \\ &= 6x^2 + 12xh + 6h^2 - 2x - 2h + 3 \end{align} Now, subtract $k(x)$ from $k(x+h)$: \begin{align} k(x+h) - k(x) &= \left(6x^2 + 12xh + 6h^2 - 2x - 2h + 3\right) - \left(6x^2 - 2x + 3\right) \\ &= 6x^2 + 12xh + 6h^2 - 2x - 2h + 3 - 6x^2 + 2x - 3 \\ &= 12xh + 6h^2 - 2h \end{align} #### Final Answer: $12xh + 6h^2 - 2h$ ::: ## Question 3 Find the indicated quantites for $f(x)=3x^2$: ### a. The slope of the secant line through the points $(1,f(1))$ and $(4,f(4))$ on the graph of $f(x)$. ::: spoiler <summary> Example: </summary> Find the indicated quantities for $f(x) = 2x^2$: ### a. The slope of the secant line through the points $(2,f(2))$ and $(3,f(3))$ on the graph of $f(x)$. First, find the function values at $x = 2$ and $x = 3$: \begin{align} f(2) &= 2(2)^2 = 2 \cdot 4 = 8 \\ f(3) &= 2(3)^2 = 2 \cdot 9 = 18 \end{align} Now, the slope of the secant line between the points $(2, f(2))$ and $(3, f(3))$ is given by the formula: $$ \text{slope} = \frac{f(3) - f(2)}{3 - 2} $$ Substitute the values we found: \begin{align} \text{slope} &= \frac{18 - 8}{3 - 2} \\ &= \frac{10}{1} = 10 \end{align} #### Final Answer: The slope of the secant line is $10$. ::: ::: spoiler <summary> Solution: </summary> We are given $f(x) = 3x^2$. Now, we need to find the slope of the secant line through the points $(1, f(1))$ and $(4, f(4))$ on the graph of $f(x)$. First, we find $f(1)$ and $f(4)$: \begin{align} f(1) &= 3(1)^2 = 3 \\ f(4) &= 3(4)^2 = 3(16) = 48 \end{align} The slope of the secant line between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given by: $$ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} $$ Substitute the values: \begin{align} \text{slope} &= \frac{f(4) - f(1)}{4 - 1} \\ &= \frac{48 - 3}{4 - 1} \\ &= \frac{45}{3} \\ &= 15 \end{align} #### Final Answer: The slope of the secant line is $15$. ::: ### b. The slope of the secant line through the points $(1,f(1))$ and $(1+h,f(1+h))$ on the graph of $f(x)$. ::: spoiler <summary> Example: </summary> Find the slope of the secant line through the points $(2, f(2))$ and $(2+h, f(2+h))$ on the graph of $f(x) = 2x^2$. First, find $f(2)$: $$ f(2) = 2(2)^2 = 2 \cdot 4 = 8 $$ Next, find $f(2+h)$: \begin{align} f(2+h) &= 2(2+h)^2 \\ &= 2(4 + 4h + h^2) \\ &= 2(4) + 2(4h) + 2(h^2) \\ &= 8 + 8h + 2h^2 \end{align} Now, the slope of the secant line between the points $(2, f(2))$ and $(2+h, f(2+h))$ is given by the formula: $$ \text{slope} = \frac{f(2+h) - f(2)}{(2+h) - 2} $$ Substitute the values we found: $$ \text{slope} = \frac{(8 + 8h + 2h^2) - 8}{h} $$ Simplify the expression: $$ \text{slope} = \frac{8h + 2h^2}{h} $$ Finally, factor out $h$: $$ \text{slope} = \dfrac{h(8+2h)}{h}= 8 + 2h $$ #### Final Answer: The slope of the secant line is $8 + 2h$. ::: ::: spoiler <summary> Solution: </summary> We are given $f(x) = 3x^2$. Now, we need to find the slope of the secant line through the points $(1, f(1))$ and $(1+h, f(1+h))$ on the graph of $f(x)$. First, we find $f(1)$ and $f(1+h)$: \begin{align} f(1) &= 3(1)^2 = 3 \\ f(1+h) &= 3(1+h)^2 = 3(1 + 2h + h^2) = 3 + 6h + 3h^2 \end{align} The slope of the secant line between the points $(1, f(1))$ and $(1+h, f(1+h))$ is given by: $$ \text{slope} = \frac{f(1+h) - f(1)}{(1+h) - 1} $$ Substitute the values: \begin{align} \text{slope} &= \frac{(3 + 6h + 3h^2) - 3}{(1+h) - 1} \\ &= \frac{6h + 3h^2}{h} \\ &= 6 + 3h \end{align} #### Final Answer: The slope of the secant line is $6 + 3h$. ::: ## Question 4 Use the four-step process to find $f'(x)$ and then find $f'(1)$ for each $f(x)$. ### a. $f(x)=2x^2+8$ ::: spoiler <summary> Example: </summary> To find $f'(x)=\displaystyle \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}$ using the definition of the derivative, where $f(x) = 3x^2 + 5$, we use the four-step process. ### Step 1: Find $f(x+h)$ \begin{align} f(x+h) &= 3(x+h)^2 + 5 \\ &= 3(x^2 + 2xh + h^2) + 5 \\ &= 3x^2 + 6xh + 3h^2 + 5 \end{align} ### Step 2: Compute $f(x+h) - f(x)$ \begin{align} f(x+h) - f(x) &= \left(3x^2 + 6xh + 3h^2 + 5\right) - \left(3x^2 + 5\right) \\ &= 3x^2 + 6xh + 3h^2 + 5 - 3x^2 - 5 \\ &= 6xh + 3h^2 \end{align} ### Step 3: Compute $\frac{f(x+h) - f(x)}{h}$ \begin{align} \frac{f(x+h) - f(x)}{h} &= \frac{6xh + 3h^2}{h} \\ &= 6x + 3h \end{align} ### Step 4: Take the limit as $h \to 0$ \begin{align} f'(x) &= \lim_{h \to 0} (6x + 3h) \\ &= 6x \end{align} #### Final Answer: $$ f'(x) = 6x $$ Then $f'(1)=6(1)=6$. ::: ::: spoiler <summary> Solution: </summary> We are given $f(x) = 2x^2 + 8$. We will use the four-step process to find $f'(x)=\displaystyle \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}$ and then find $f'(1)$. ### Step 1: Find $f(x+h)$ \begin{align} f(x+h) &= 2(x+h)^2 + 8 \\ &= 2(x^2 + 2xh + h^2) + 8 \\ &= 2x^2 + 4xh + 2h^2 + 8 \end{align} ### Step 2: Compute $f(x+h) - f(x)$ \begin{align} f(x+h) - f(x) &= \left( 2x^2 + 4xh + 2h^2 + 8 \right) - \left( 2x^2 + 8 \right) \\ &= 4xh + 2h^2 \end{align} ### Step 3: Divide by $h$ \begin{align} \frac{f(x+h) - f(x)}{h} &= \frac{4xh + 2h^2}{h} \\ &= 4x + 2h \end{align} ### Step 4: Take the limit as $h$ approaches 0 \begin{align} f'(x) &= \lim_{h \to 0} (4x + 2h) \\ &= 4x \end{align} Thus, $f'(x) = 4x$. Now, find $f'(1)$: \begin{align} f'(1) &= 4(1) = 4 \end{align} #### Final Answer: $f'(x) = 4x$ and $f'(1) = 4$ ::: ### b. $f(x)=\dfrac{6}{x}-2$ ::: spoiler <summary> Example: </summary> $f(x)=\dfrac{3}{x}-1$ To find $f'(x)$ using the definition of the derivative, where $f(x) = \dfrac{3}{x} - 1$, we use the four-step process. ### Step 1: Find $f(x+h)$ \begin{align} f(x+h) &= \frac{3}{x+h} - 1 \end{align} ### Step 2: Compute $f(x+h) - f(x)$ \begin{align} f(x+h) - f(x) &= \left(\frac{3}{x+h} - 1\right) - \left(\frac{3}{x} - 1\right) \\ &= \frac{3}{x+h} - 1 - \frac{3}{x} + 1 \\ &= \frac{3}{x+h} - \frac{3}{x} \\ &= \frac{3}{x+h} \left(\dfrac{x}{x}\right) - \frac{3}{x}\left(\dfrac{x+h}{x+h}\right) \\ &= \frac{3x - 3(x+h)}{x(x+h)} \\ &= \frac{3x - 3x - 3h}{x(x+h)} \\ &= \frac{-3h}{x(x+h)} \end{align} ### Step 3: Compute $\frac{f(x+h) - f(x)}{h}$ \begin{align} \frac{f(x+h) - f(x)}{h} &= \frac{-3h}{h \cdot x(x+h)} \\ &= \frac{-3}{x(x+h)} \end{align} ### Step 4: Take the limit as $h \to 0$ \begin{align} f'(x) &= \lim_{h \to 0} \frac{-3}{x(x+h)} \\ &=\dfrac{-3}{x(x+0)} \\ &= \frac{-3}{x^2} \end{align} #### Final Answer: $$ f'(x) = \frac{-3}{x^2} $$ ::: ::: spoiler <summary> Solution: </summary> We are given $f(x) = \dfrac{6}{x} - 2$. We will use the four-step process to find $f'(x)$. ### Step 1: Find $f(x+h)$ \begin{align} f(x+h) &= \dfrac{6}{x+h} - 2 \end{align} ### Step 2: Compute $f(x+h) - f(x)$ \begin{align} f(x+h) - f(x) &= \left( \dfrac{6}{x+h} - 2 \right) - \left( \dfrac{6}{x} - 2 \right) \\ &= \dfrac{6}{x+h} - \dfrac{6}{x} \\ &= \dfrac{6}{x+h}\left(\dfrac{x}{x}\right) - \dfrac{6}{x}\left(\dfrac{x+h}{x+h}\right) \\ \end{align} We now simplify the difference between the two fractions. Find a common denominator: \begin{align} f(x+h) - f(x) &= \dfrac{6x - 6(x+h)}{x(x+h)} \\ &= \dfrac{6x - 6x - 6h}{x(x+h)} \\ &= \dfrac{-6h}{x(x+h)} \end{align} ### Step 3: Divide by $h$ \begin{align} \frac{f(x+h) - f(x)}{h} &= \frac{\dfrac{-6h}{x(x+h)}}{h} \\ &= \dfrac{-6}{x(x+h)} \end{align} ### Step 4: Take the limit as $h$ approaches $0$ \begin{align} f'(x) &= \lim_{h \to 0} \dfrac{-6}{x(x+h)} \\ &= \dfrac{-6}{x^2} \end{align} Thus, $f'(x) = \dfrac{-6}{x^2}$. #### Final Answer: $f'(x) = \dfrac{-6}{x^2}$ $f'(1)=\dfrac{-6}{1^2}=-6$ :::