# In-Class Activity 2.5 ## Question 1 Write as a sum of power functions: ### a. $\dfrac{6x^3+2x^2-x}{x^2}$ ::: spoiler <summary> Example: </summary> Write as a sum of power functions: $\dfrac{5x^4+3x^3-2x^2}{x^3}$ \begin{align} \dfrac{5x^4+3x^3-2x^2}{x^3}&=\dfrac{5x^4}{x^3}+\dfrac{3x^3}{x^3}-\dfrac{2x^2}{x^3} \\ &=5x^{4-3}+3x^{3-3} -2x^{2-3} \\ &=5x^1+3x^0-2x^{-1} \\ &=5x+3-2x^{-1} \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{6x^3+2x^2-x}{x^2}&=\dfrac{6x^3}{x^2}+\dfrac{2x^2}{x^2}-\dfrac{x}{x^2} \\ &=6x^{3-2}+2x^{2-2}-x^{1-2} \\ &=6x^1+2x^0-x^{-1} \\ &=6x+2-x^{-1} \end{align} ::: ### b. $\dfrac{-2x^3+5x^2-2x}{\sqrt{x}}$ ::: spoiler <summary> Example: </summary> Write as a sum of power functions: $\dfrac{-4x^4+2x^3-5x}{\sqrt{x}}$ \begin{align} \dfrac{-4x^4+2x^3-5x}{\sqrt{x}} &= \dfrac{-4x^4}{\sqrt{x}} + \dfrac{2x^3}{\sqrt{x}} - \dfrac{5x}{\sqrt{x}} \\ &= \dfrac{-4x^4}{x^{\frac{1}{2}}} + \dfrac{2x^3}{x^{\frac{1}{2}}} - \dfrac{5x}{x^{\frac{1}{2}}} \\ &= -4x^{4-\frac{1}{2}} + 2x^{3-\frac{1}{2}} - 5x^{1-\frac{1}{2}} \\ &= -4x^{\frac{7}{2}} + 2x^{\frac{5}{2}} - 5x^{\frac{1}{2}} \\ \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{-2x^3+5x^2-2x}{\sqrt{x}}&=\dfrac{-2x^3+5x^2-2x}{x^{1/2}} \\ &=\dfrac{-2x^3}{x^{1/2}}+\dfrac{5x^2}{x^{1/2}}-\dfrac{2x}{x^{1/2}} \\ &=-2x^{3-1/2}+5x^{2-1/2}-2x^{1-1/2} \\ &=-2x^{6/2-1/2}+5x^{4/2-1/2}-2x^{2/2-1/2} \\ &=-2x^{5/2}+5x^{3/2}-2x^{1/2} \end{align} ::: ## Question 2 Write as a sum of power functions. ### a. $\dfrac{1}{6}x(3x-4)(6x+2)$ ::: spoiler <summary> Example: </summary> $\dfrac{1}{5}x(4x+3)(5x-2)$ \begin{align} \dfrac{1}{5}x(4x+3)(5x-2)&=\dfrac{x(4x+3)(5x-2)}{5} \\ &=\dfrac{x(20x^2-8x+15x-6)}{5} \\ &=\dfrac{x(20x^2+7x-6)}{5} \\ &=\dfrac{20x^3+7x^2-6x}{5} \\ &=\dfrac{20}{5}x^3+\dfrac{7}{5}x^2-\dfrac{6}{5}x \\ &=4x^3+\dfrac{7}{5}x^2-\dfrac{6}{5}x \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{1}{6}x(3x-4)(6x+2)&=\dfrac{x(3x-4)(6x+2)}{6} \\ &=\dfrac{x(18x^2+6x-24x-8)}{6} \\ &=\dfrac{x(18x^2-18x-8)}{6} \\ &=\dfrac{18x^3-18x^2-8x}{6} \\ &=\dfrac{18}{6} x^3-\dfrac{18}{6}x^2-\dfrac{8}{6}x \\ &=3x^3-3x^2-\dfrac{4}{3}x \end{align} ::: ### b. $\dfrac{1}{2}\sqrt{x}(4-2x)(3x^2-1)$ ::: spoiler <summary> Example: </summary> $\dfrac{1}{3} \sqrt{x}(5-3x)(2x^2-7)$ \begin{align} \dfrac{1}{3} \sqrt{x}(5-3x)(2x^2-7) &= \dfrac{\sqrt{x}(5-3x)(2x^2-7)}{3} \\ &= \dfrac{\sqrt{x} \left(10x^2 - 35 - 6x^3 + 21x \right)}{3} \\ &= \dfrac{\sqrt{x} \left(-6x^3 + 10x^2 + 21x - 35 \right)}{3} \\ &= \dfrac{x^{\frac{1}{2}} \left(-6x^3 + 10x^2 + 21x - 35 \right)}{3} \\ &= \dfrac{-6x^{3 + \frac{1}{2}} + 10x^{2 + \frac{1}{2}} + 21x^{1 + \frac{1}{2}} - 35x^{\frac{1}{2}}}{3} \\ &= \dfrac{-6x^{\frac{7}{2}}}{3} + \dfrac{10x^{\frac{5}{2}}}{3} + \dfrac{21x^{\frac{3}{2}}}{3} - \dfrac{35x^{\frac{1}{2}}}{3} \\ &= -2x^{\frac{7}{2}} + \dfrac{10}{3}x^{\frac{5}{2}} + 7x^{\frac{3}{2}} - \dfrac{35}{3}x^{\frac{1}{2}} \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{1}{2}\sqrt{x}(4-2x)(3x^2-1)&=\dfrac{x^{1/2}(4-2x)(3x^2-1)}{2} \\ &=\dfrac{x^{1/2}(12x^2-4-6x^3+2x)}{2} \\ &=\dfrac{12x^{2+1/2}-4x^{1/2}-6x^{3+1/2}+2x^{1+1/2}}{2} \\ &=\dfrac{12x^{5/2}-4x^{1/2}-6x^{7/2}+2x^{3/2}}{2} \\ &=\dfrac{12}{2}x^{5/2}-\dfrac{4}{2}x^{1/2}-\dfrac{6}{2}x^{7/2}+\dfrac{2}{2}x^{3/2} \\ &=6x^{5/2}-2x^{1/2}-3x^{7/2}+x^{3/2} \end{align} ::: ## Question 3 Find the indicated derivative: ### a. \begin{align} y&=x^{-3} \\ y'&= \end{align} ::: spoiler <summary> Example: </summary> If $y=x^{-4}$, then the derivative is found by the power rule $(x^n)'=nx^{n-1}$ \begin{align} y'&=-4x^{-4-1} \\ &=-4x^{-5} \\ &=-\dfrac{4}{x^5} \end{align} ::: ::: spoiler <summary> Solution: </summary> If $y=x^{-3}$, then the derivative is found by the power rule $(x^n)'=nx^{n-1}$ \begin{align} y'&=-3x^{-3-1} \\ &=-3x^{-4} \\ &=-\dfrac{3}{x^4} \end{align} ::: ### b. \begin{align} f(x)&=x^{5/2} \\ f'(x)&= \end{align} ::: spoiler <summary> Example: </summary> If $y=x^{7/3}$, then the derivative is found by the power rule $(x^n)'=nx^{n-1}$ \begin{align} y'&=\dfrac{7}{3} x^{7/3-1} \\ &=\dfrac{7}{3}x^{7/3-3/3} \\ &=\dfrac{7}{3}x^{4/3} \end{align} ::: ::: spoiler <summary> Solution: </summary> If $y=x^{5/2}$, then the derivative is found by the power rule $(x^n)'=nx^{n-1}$ \begin{align} y'&=\dfrac{5}{2} x^{5/2-1} \\ &=\dfrac{5}{2}x^{5/2-2/2} \\ &=\dfrac{5}{2}x^{3/2} \end{align} ::: ### c. $$\dfrac{d}{dx} \left(\dfrac{5x^3}{4}-\dfrac{2}{5x^3}\right)$$ ::: spoiler <summary> Example: </summary> $\dfrac{d}{dx} \left( \dfrac{3x^5}{2}-\dfrac{6}{7x^5}\right)$ Rewrite the inside as sum of power functions: \begin{align} \dfrac{3x^5}{2}-\dfrac{6}{7x^5}&=\dfrac{3}{2}x^5 - \dfrac{6}{7}x^{-5} \end{align} Then we can take the derivative using the power rule: \begin{align} \dfrac{d}{dx} \left(\dfrac{3}{2}x^5 - \dfrac{6}{7}x^{-5}\right)&=\dfrac{3}{2} \left( 5x^{5-1}\right) - \dfrac{6}{7} \left(-5x^{-5-1}\right) \\ &=\dfrac{15}{2}x^4 + \dfrac{30}{7}x^{-6} \\ &=\dfrac{15}{2}x^4+\dfrac{30}{7x^6} \end{align} ::: ::: spoiler <summary> Solution: </summary> $\dfrac{d}{dx} \left(\dfrac{5x^3}{4}-\dfrac{2}{5x^3}\right)$ Rewrite the inside as sum of power functions: \begin{align} \dfrac{5x^3}{4}-\dfrac{2}{5x^3}&=\dfrac{5}{4}x^3-\dfrac{2}{5}x^{-3} \end{align} Then we can take the derivative using the power rule: \begin{align} \dfrac{d}{dx} \left(\dfrac{5}{4}x^3-\dfrac{2}{5}x^{-3}\right)&=\dfrac{5}{4}(3x^{3-1}-\dfrac{2}{5}(-3x^{-3-1}) \\ &=\dfrac{15}{4}x^2+\dfrac{6}{5}x^{-4} \\ &=\dfrac{15}{4}x^2+\dfrac{6}{5x^4} \end{align} ::: ### d. \begin{align} f(x)&=\dfrac{2x^5-4x^3+2x}{x^3} \\ f'(x)&= \end{align} ::: spoiler <summary> Example: </summary> If $$f(x)=\dfrac{3x^6-2x^4+3x}{x^4}$$ then we must rewrite as sum of power functions: \begin{align} \dfrac{3x^6-2x^4+3x}{x^4}&=3x^{6-4} -2x^{4-4}+3x^{1-4} \\ &=3x^2-2x^0+3x^{-3} \end{align} Now we can take the derivative by the power rule $(x^n)'=nx^{n-1}$: \begin{align} f'(x)&=\left(3x^2-2x^0+3x^{-3} \right)' \\ &=3(2x^{2-1}) -2(0x^{0-1})+3(-3x^{-3-1}) \\ &=6x^1-0-9x^{-4} \\ &=6x-9x^{-4} \\ &=6x- \dfrac{9}{x^4} \end{align} ::: ::: spoiler <summary> Solution: </summary> If $$f(x)=\dfrac{2x^5-4x^3+2x}{x^3}$$ then we must rewrite as sum of power functions: \begin{align} \dfrac{2x^5-4x^3+2x}{x^3}&=\dfrac{2x^5}{x^3}-\dfrac{4x^3}{x^3}+\dfrac{2x}{x^3} \\ &=2x^{5-3}-4x^{3-3} +2x^{1-3} \\ &=2x^2-4x^0 +2x^{-2} \end{align} Now we can take the derivative by the power rule $(x^n)'=nx^{n-1}$: \begin{align} f'(x)&=\left(2x^2-4x^0 +2x^{-2} \right)' \\ &=2(2x^{2-1}) -4(0x^{0-1})+2(-2x^{-2-1}) \\ &=4x^1-0-4x^{-3} \\ &=4x-4x^{-3} \\ &=4x-\dfrac{4}{x^3} \end{align} :::