# Question 1: Write each $H(x)$ as $H(x) = f(x)g'(x)$, then calculate $f'(x)g(x)$, for an antiderivative $g(x)$. Do this in two different ways. ## a. $$H(x) = xe^x$$ ::: spoiler <summary> Example: </summary> $H(x)=x^3 e^x$ We are given the function $H(x) = x^3 e^x=f(x)g'(x)$, and we want to express this in two different ways as $f(x) g'(x)$, then calculate $f'(x) g(x)$, where $g(x)$ is an antiderivative of $g'(x)$. ### Method 1: 1. **Let $f(x) = x^3$ and $g'(x) = e^x$.** 2. The antiderivative of $g'(x) = e^x$ is $g(x) = e^x$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = 3x^2$ - $g(x) = e^x$ - So, $f'(x) g(x) = 3x^2 e^x$. ### Method 2: 1. **Let $f(x) = e^x$ and $g'(x) = x^3$.** 2. The antiderivative of $g'(x) = x^3$ is $g(x) = \frac{x^4}{4}$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = e^x$ - $g(x) = \frac{x^4}{4}$ - So, $f'(x) g(x) = \frac{x^4 e^x}{4}$. ### Summary: Here’s a table summarizing the two methods: | **Method** | **Expression for $f(x)$** | **Expression for $g'(x)$** | **Result of $f'(x)g(x)$** | |------------------------------------|----------------------------|-----------------------------|--------------------------------------| | **Method 1**: $f(x) = x^3$, $g'(x) = e^x$ | $f(x) = x^3$ | $g'(x) = e^x$ | $3x^2 e^x$ | | **Method 2**: $f(x) = e^x$, $g'(x) = x^3$ | $f(x) = e^x$ | $g'(x) = x^3$ | $\frac{x^4 e^x}{4}$ | This table shows how we express the function in two ways and the results of $f'(x) g(x)$ for each method. ::: ## b. $$H(x) = x^2 e^x$$ ::: spoiler <summary> Example: </summary> We are given the function $H(x) = x^4 e^x$, and we want to express this in two different ways as $f(x) g'(x)$, then calculate $f'(x) g(x)$, where $g(x)$ is an antiderivative of $g'(x)$. ### Method 1: 1. **Let $f(x) = x^4$ and $g'(x) = e^x$.** 2. The antiderivative of $g'(x) = e^x$ is $g(x) = e^x$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = 4x^3$ - $g(x) = e^x$ - So, $f'(x) g(x) = 4x^3 e^x$. ### Method 2: 1. **Let $f(x) = e^x$ and $g'(x) = x^4$.** 2. The antiderivative of $g'(x) = x^4$ is $g(x) = \frac{x^5}{5}$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = e^x$ - $g(x) = \frac{x^5}{5}$ - So, $f'(x) g(x) = \frac{x^5 e^x}{5}$. ### Summary: Here’s a table summarizing the two methods: | **Method** | **Expression for $f(x)$** | **Expression for $g'(x)$** | **Result of $f'(x)g(x)$** | |------------------------------------|----------------------------|-----------------------------|--------------------------------------| | **Method 1**: $f(x) = x^4$, $g'(x) = e^x$ | $f(x) = x^4$ | $g'(x) = e^x$ | $4x^3 e^x$ | | **Method 2**: $f(x) = e^x$, $g'(x) = x^4$ | $f(x) = e^x$ | $g'(x) = x^4$ | $\frac{x^5 e^x}{5}$ | This table shows how we express the function in two ways and the results of $f'(x) g(x)$ for each method. ::: ## c. $$H(x) = x \ln(x)$$ ::: spoiler <summary> Example: </summary> We are given the function $H(x) = x^2 \ln(x)$, and we want to express this in two different ways as $f(x) g'(x)$, then calculate $f'(x) g(x)$, where $g(x)$ is an antiderivative of $g'(x)$. ### Method 1: 1. **Let $f(x) = x^2$ and $g'(x) = \ln(x)$.** 2. The antiderivative of $g'(x) = \ln(x)$ is $g(x) = x \ln(x) - x$ (since $\int \ln(x) dx = x \ln(x) - x$). 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = 2x$ - $g(x) = x \ln(x) - x$ - So, $f'(x) g(x) = 2x \left(x \ln(x) - x\right) = 2x^2 \ln(x) - 2x^2$. ### Method 2: 1. **Let $f(x) = \ln(x)$ and $g'(x) = x^2$.** 2. The antiderivative of $g'(x) = x^2$ is $g(x) = \frac{x^3}{3}$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = \frac{1}{x}$ - $g(x) = \frac{x^3}{3}$ - So, $f'(x) g(x) = \frac{1}{x} \cdot \frac{x^3}{3} = \frac{x^2}{3}$. ### Summary: Here’s a table summarizing the two methods: | **Method** | **Expression for $f(x)$** | **Expression for $g'(x)$** | **Result of $f'(x)g(x)$** | |------------------------------------|----------------------------|-----------------------------|-----------------------------------------| | **Method 1**: $f(x) = x^2$, $g'(x) = \ln(x)$ | $f(x) = x^2$ | $g'(x) = \ln(x)$ | $2x^2 \ln(x) - 2x^2$ | | **Method 2**: $f(x) = \ln(x)$, $g'(x) = x^2$ | $f(x) = \ln(x)$ | $g'(x) = x^2$ | $\frac{x^2}{3}$ | This table shows how we express the function in two ways and the results of $f'(x) g(x)$ for each method. ::: ## d. $$H(x) = x^3 \ln(x)$$ ::: spoiler <summary> Example: </summary> We are given the function $H(x) = x^4 \ln(x)$, and we want to express this in two different ways as $f(x) g'(x)$, then calculate $f'(x) g(x)$, where $g(x)$ is an antiderivative of $g'(x)$. ### Method 1: 1. **Let $f(x) = x^4$ and $g'(x) = \ln(x)$.** 2. The antiderivative of $g'(x) = \ln(x)$ is $g(x) = x \ln(x) - x$ (since $\int \ln(x) dx = x \ln(x) - x$). 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = 4x^3$ - $g(x) = x \ln(x) - x$ - So, $f'(x) g(x) = 4x^3 \left(x \ln(x) - x\right) = 4x^4 \ln(x) - 4x^4$. ### Method 2: 1. **Let $f(x) = \ln(x)$ and $g'(x) = x^4$.** 2. The antiderivative of $g'(x) = x^4$ is $g(x) = \frac{x^5}{5}$. 3. Now, calculate $f'(x)$ and multiply by $g(x)$: - $f'(x) = \frac{1}{x}$ - $g(x) = \frac{x^5}{5}$ - So, $f'(x) g(x) = \frac{1}{x} \cdot \frac{x^5}{5} = \frac{x^4}{5}$. ### Summary: Here’s a table summarizing the two methods: | **Method** | **Expression for $f(x)$** | **Expression for $g'(x)$** | **Result of $f'(x)g(x)$** | |------------------------------------|----------------------------|-----------------------------|-----------------------------------------| | **Method 1**: $f(x) = x^4$, $g'(x) = \ln(x)$ | $f(x) = x^4$ | $g'(x) = \ln(x)$ | $4x^4 \ln(x) - 4x^4$ | | **Method 2**: $f(x) = \ln(x)$, $g'(x) = x^4$ | $f(x) = \ln(x)$ | $g'(x) = x^4$ | $\frac{x^4}{5}$ | This table shows how we express the function in two ways and the results of $f'(x) g(x)$ for each method. ::: # Question 2: Find the following derivatives ## a. For the function $$f(x) = \frac{x}{x^2+1}$$ find: $$f'(x) = $$ ::: spoiler <summary> Example: </summary> Find the derivative of $\dfrac{x}{x^3+2}$ We are given the function $\frac{x}{x^3 + 2}$, and we need to find the derivative using the quotient rule. The quotient rule for a function $\frac{f(x)}{g(x)}$ is given by: $$ \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} $$ In this case: - $f(x) = x$ (the top function) - $g(x) = x^3 + 2$ (the bottom function) ### Table: | **Original / Derivative** | **Top Function** | **Bottom Function** | |----------------------------|----------------------------|----------------------------| | **Original** | $f(x) = x$ | $g(x) = x^3 + 2$ | | **Derivative** | $f'(x) = 1$ | $g'(x) = 3x^2$ | ### Step-by-Step Derivative Calculation: Using the quotient rule: $$ \frac{d}{dx}\left(\frac{x}{x^3 + 2}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} $$ Substitute $f(x) = x$, $f'(x) = 1$, $g(x) = x^3 + 2$, and $g'(x) = 3x^2$: $$ = \frac{1(x^3 + 2) - x(3x^2)}{(x^3 + 2)^2} $$ Simplify the numerator: $$ = \frac{x^3 + 2 - 3x^3}{(x^3 + 2)^2} $$ Combine like terms: $$ = \frac{-2x^3 + 2}{(x^3 + 2)^2} $$ Finally, factor out the common term in the numerator: $$ = \frac{2(1 - x^3)}{(x^3 + 2)^2} $$ ### Final Result: $$ \frac{d}{dx}\left(\frac{x}{x^3 + 2}\right) = \frac{2(1 - x^3)}{(x^3 + 2)^2} $$ ::: --- ## b. For the function $$g(x) = (x^2+1)^8$$, find: $$g'(x) = $$ ::: spoiler <summary> Example: </summary> We are given the function $g(x) = (x^3 + 2)^7$, and we need to find its derivative using the chain rule. The chain rule states that if $g(x) = f(u)$ and $u = h(x)$, then: $$ \frac{d}{dx}g(x) = f'(u) \cdot u'(x) $$ In this case: - The outer function is $f(u) = u^7$ - The inner function is $u(x) = x^3 + 2$ ### Table: | **Original / Derivative** | **Outer Function $f(u)$** | **Inner Function $u(x)$** | |----------------------------|----------------------------|----------------------------| | **Original** | $f(u) = u^7$ | $u(x) = x^3 + 2$ | | **Derivative** | $f'(u) = 7u^6$ | $u'(x) = 3x^2$ | ### Step-by-Step Derivative Calculation: Using the chain rule: $$ \frac{d}{dx}(x^3 + 2)^7 = f'(u) \cdot u'(x) $$ Substitute $f'(u) = 7u^6$ and $u'(x) = 3x^2$: $$ = 7(x^3 + 2)^6 \cdot 3x^2 $$ Simplify: $$ = 21x^2 (x^3 + 2)^6 $$ ### Final Result: The derivative of $g(x) = (x^3 + 2)^7$ is: $$ g'(x) = 21x^2 (x^3 + 2)^6 $$ ::: --- ## c. For the function $$h(x) = \sqrt{1-x^2}$$ find $$h'(x) = $$ ::: spoiler <summary> Example: </summary> We are given the function $h(x) = \sqrt{2 - x^3}$, and we need to find its derivative using the chain rule. First, rewrite the function as: $$ h(x) = (2 - x^3)^{\frac{1}{2}} $$ The chain rule states that if $h(x) = f(u)$ and $u = g(x)$, then: $$ \frac{d}{dx}h(x) = f'(u) \cdot u'(x) $$ In this case: - The outer function is $f(u) = u^{\frac{1}{2}}$ - The inner function is $u(x) = 2 - x^3$ ### Table: | **Original / Derivative** | **Outer Function $f(u)$** | **Inner Function $u(x)$** | |----------------------------|------------------------------------|----------------------------| | **Original** | $f(u) = u^{\frac{1}{2}}$ | $u(x) = 2 - x^3$ | | **Derivative** | $f'(u) = \frac{1}{2} u^{-\frac{1}{2}}$ | $u'(x) = -3x^2$ | ### Step-by-Step Derivative Calculation: Using the chain rule: $$ \frac{d}{dx}(2 - x^3)^{\frac{1}{2}} = f'(u) \cdot u'(x) $$ Substitute $f'(u) = \frac{1}{2} u^{-\frac{1}{2}}$ and $u'(x) = -3x^2$: $$ = \frac{1}{2}(2 - x^3)^{-\frac{1}{2}} \cdot (-3x^2) $$ Simplify: $$ = \frac{-3x^2}{2\sqrt{2 - x^3}} $$ ### Final Result: The derivative of $h(x) = \sqrt{2 - x^3}$ is: $$ h'(x) = \frac{-3x^2}{2\sqrt{2 - x^3}} $$ ::: --- # Question 3: Integrate by parts to find each integral ## a. $$ \int x^3 \ln(x) \, dx = \quad $$ ::: spoiler <summary> Example: </summary> We are tasked with finding $\displaystyle \int x^4 \ln(x) \, dx$ using integration by parts. The integration by parts formula is: $$ \int u \, dv = uv - \int v \, du $$ ### Step-by-Step Solution: We choose: - $u = \ln(x)$ - $dv = x^4 \, dx$ Now, differentiate $u$ and integrate $dv$: | **$u$ and $du$** | **$dv$ and $v$** | |-----------------------------------|------------------------------| | $u = \ln(x)$ | $dv = x^4 \, dx$ | | $du = \frac{1}{x} \, dx$ | $v = \frac{x^5}{5}$ | Now apply the integration by parts formula: $$ \int x^4 \ln(x) \, dx = \ln(x) \cdot \frac{x^5}{5} - \int \frac{x^5}{5} \cdot \frac{1}{x} \, dx $$ Simplify: $$ = \frac{x^5 \ln(x)}{5} - \frac{1}{5} \int x^4 \, dx $$ Now, integrate $x^4$: $$ \int x^4 \, dx = \frac{x^5}{5} $$ Substitute this back into the equation: $$ = \frac{x^5 \ln(x)}{5} - \frac{1}{5} \cdot \frac{x^5}{5} $$ Simplify: $$ = \frac{x^5 \ln(x)}{5} - \frac{x^5}{25} $$ Thus, the integral of $x^4 \ln(x)$ is: $$ \int x^4 \ln(x) \, dx = \frac{x^5 \ln(x)}{5} - \frac{x^5}{25} + C $$ Where $C$ is the constant of integration. ### Final Answer: $$ \int x^4 \ln(x) \, dx = \frac{x^5 \ln(x)}{5} - \frac{x^5}{25} + C $$ ::: --- ## b. $$ \int \sqrt{x} \ln(x) \, dx = $$ ::: spoiler <summary> Example: </summary> We are tasked with finding $\displaystyle \int \sqrt[3]{x} \ln(x) \, dx$ using integration by parts. First, rewrite the cube root as a power: $$ \int \sqrt[3]{x} \ln(x) \, dx = \int x^{\frac{1}{3}} \ln(x) \, dx $$ The integration by parts formula is: $$ \int u \, dv = uv - \int v \, du $$ ### Step-by-Step Solution: We choose: - $u = \ln(x)$ - $dv = x^{\frac{1}{3}} \, dx$ Now, differentiate $u$ and integrate $dv$: | **$u$ and $du$** | **$dv$ and $v$** | |-----------------------------------|------------------------------| | $u = \ln(x)$ | $dv = x^{\frac{1}{3}} \, dx$ | | $du = \frac{1}{x} \, dx$ | $v = \frac{3}{4} x^{\frac{4}{3}}$ | Now apply the integration by parts formula: $$ \int x^{\frac{1}{3}} \ln(x) \, dx = \ln(x) \cdot \frac{3}{4} x^{\frac{4}{3}} - \int \frac{3}{4} x^{\frac{4}{3}} \cdot \frac{1}{x} \, dx $$ Simplify: $$ = \frac{3}{4} x^{\frac{4}{3}} \ln(x) - \frac{3}{4} \int x^{\frac{1}{3}} \, dx $$ Now, integrate $x^{\frac{1}{3}}$: $$ \int x^{\frac{1}{3}} \, dx = \frac{3}{4} x^{\frac{4}{3}} $$ Substitute this back into the equation: $$ = \frac{3}{4} x^{\frac{4}{3}} \ln(x) - \frac{9}{16} x^{\frac{4}{3}} $$ Thus, the integral of $\sqrt[3]{x} \ln(x)$ is: $$ \int x^{\frac{1}{3}} \ln(x) \, dx = \frac{3}{4} x^{\frac{4}{3}} \ln(x) - \frac{9}{16} x^{\frac{4}{3}} + C $$ Where $C$ is the constant of integration. ### Final Answer: $$ \int x^{\frac{1}{3}} \ln(x) \, dx = \frac{3}{4} x^{\frac{4}{3}} \ln(x) - \frac{9}{16} x^{\frac{4}{3}} + C $$ ::: --- # Question 4: Integrate as indicated. Use integration by parts. ## a. $$ \int_0^1 (x+1) e^x \, dx = \quad $$ ::: spoiler <summary> Example: </summary> We are tasked with evaluating the definite integral: $$ \int_0^2 (x+2)e^x \, dx $$ ### Step-by-Step Solution: We'll use integration by parts. The integration by parts formula is: $$ \int u \, dv = uv - \int v \, du $$ We choose: - $u = (x+2)$ - $dv = e^x \, dx$ Now, differentiate $u$ and integrate $dv$: | **$u$ and $du$** | **$dv$ and $v$** | |-----------------------------------|------------------------------| | $u = x+2$ | $dv = e^x \, dx$ | | $du = dx$ | $v = e^x$ | Now apply the integration by parts formula: $$ \int (x+2) e^x \, dx = (x+2) e^x - \int e^x \, dx $$ The second integral is straightforward: $$ \int e^x \, dx = e^x $$ Thus, the integral becomes: $$ (x+2) e^x - e^x $$ Now, evaluate this from 0 to 2: $$ \left[ (x+2) e^x - e^x \right]_0^2 $$ At the upper limit $x = 2$: $$ \left( (2+2) e^2 - e^2 \right) = (4e^2 - e^2) = 3e^2 $$ At the lower limit $x = 0$: $$ \left( (0+2) e^0 - e^0 \right) = (2 \cdot 1 - 1) = 1 $$ Thus, the final result is: $$ 3e^2 - 1 $$ ### Final Answer: $$ \int_0^2 (x+2)e^x \, dx = 3e^2 - 1 $$ ::: --- ## b. $$ \int_1^e \frac{\ln(x)}{x^2} \, dx = $$ ::: spoiler <summary> Example: </summary> We are tasked with evaluating the definite integral: $$ \int_2^e \frac{\ln x}{x^3} \, dx $$ ### Step-by-Step Solution: We'll first find the **antiderivative** of the function \( \frac{\ln x}{x^3} \) using **integration by parts**. The integration by parts formula is: $$ \int u \, dv = uv - \int v \, du $$ ### Step 1: Choosing $u$ and $dv$ Let: - $u = \ln x$, so $du = \frac{1}{x} \, dx$ - $dv = \frac{1}{x^3} \, dx$, so $v = -\frac{1}{2x^2}$ (since $\int \frac{1}{x^3} \, dx = -\frac{1}{2x^2}$) ### Step 2: Applying the integration by parts formula Now, apply the integration by parts formula: $$ \int \frac{\ln x}{x^3} \, dx = \ln x \cdot \left( -\frac{1}{2x^2} \right) - \int \left( -\frac{1}{2x^2} \right) \cdot \frac{1}{x} \, dx $$ This simplifies to: $$ \int \frac{\ln x}{x^3} \, dx = -\frac{\ln x}{2x^2} + \frac{1}{2} \int \frac{1}{x^3} \, dx $$ ### Step 3: Solving the remaining integral The remaining integral is: $$ \int \frac{1}{x^3} \, dx = -\frac{1}{2x^2} $$ So, the full antiderivative is: $$ -\frac{\ln x}{2x^2} + \frac{1}{2} \left( -\frac{1}{2x^2} \right) = -\frac{\ln x}{2x^2} - \frac{1}{4x^2} $$ ### Step 4: Evaluate the antiderivative at the bounds Now we evaluate the antiderivative from $x = 2$ to $x = e$. At $x = e$: $$ -\frac{\ln e}{2e^2} - \frac{1}{4e^2} = -\frac{1}{2e^2} - \frac{1}{4e^2} = -\frac{3}{4e^2} $$ At $x = 2$: $$ -\frac{\ln 2}{2 \cdot 2^2} - \frac{1}{4 \cdot 2^2} = -\frac{\ln 2}{8} - \frac{1}{16} $$ ### Step 5: Subtract to find the definite integral Now subtract the values at $x = e$ and $x = 2$: $$\left( -\frac{3}{4e^2} \right) - \left( -\frac{\ln 2}{8} - \frac{1}{16} \right)$$ Simplifying: $$= -\frac{3}{4e^2} + \frac{\ln 2}{8} + \frac{1}{16}$$ ### Final Answer: $$\int_2^e \frac{\ln x}{x^3} \, dx = - \frac{3}{4e^2} + \frac{\ln 2}{8} + \frac{1}{16}$$ :::