[toc] # In-Class Activity 3.2 ### Question 1: Rewrite as 'simple' natural logarithms #### a) Rewrite $\ln(x^8)$: ::: spoiler <summary> Example: </summary> a) Rewrite $\ln(x^{6})$: | Explanation | Equation | |--------------------------------------------------|-------------------------------------| | Use the power rule of logarithms: $\ln(a^b) = b\ln(a)$ | $\ln(x^{6}) = 6\ln(x)$ | ::: #### b) Rewrite $\ln\left(\frac{1}{x^3}\right)$: ::: spoiler <summary> Example: </summary> Rewrite $\ln\left(\frac{1}{x^7}\right)$ 1. Use the fact that $\frac{1}{x^7} = x^{-7}$: $$ \ln\left(\frac{1}{x^7}\right) = \ln(x^{-7}) $$ 2. Apply the power rule: $\ln(A^B) = B\ln(A)$: $$ \ln(x^{-7}) = -7\ln(x) $$ ### Final Answer: $$ \ln\left(\frac{1}{x^7}\right) = -7\ln(x) $$ ::: #### c) Rewrite $\ln(2x^5)$: ::: spoiler <summary> Example: </summary> ### Rewrite $\ln(3x^4)$ in a simple form | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given expression | $\ln(3x^4)$ | | Apply the product rule: $\ln(AB) = \ln(A) + \ln(B)$ | $\ln(3) + \ln(x^4)$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$ to $\ln(x^4)$ | $\ln(3) + 4\ln(x)$ | ### Final Expression: $$ \ln(3x^4) = \ln(3) + 4\ln(x) $$ ::: #### d) Rewrite $\ln\left(\frac{3}{4x^5}\right)$: ::: spoiler <summary> Example: </summary> ### Rewrite $\ln\left(\frac{4}{6x^7}\right)$ in a simple form | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given expression | $\ln\left(\frac{4}{6x^7}\right)$ | | Apply the quotient rule: $\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)$ | $\ln(4) - \ln(6x^7)$ | | Use the product rule: $\ln(AB) = \ln(A) + \ln(B)$ to split $\ln(6x^7)$ | $\ln(4) - [\ln(6) + \ln(x^7)]$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$ to $\ln(x^7)$ | $\ln(4) - [\ln(6) + 7\ln(x)]$ | | Simplify the expression | $\ln(4) - \ln(6) - 7\ln(x)$ | ### Final Expression: $$ \ln\left(\frac{4}{6x^7}\right) = \ln(4) - \ln(6) - 7\ln(x) $$ ::: #### e) Rewrite $\log_2(4x^5)$: ::: spoiler <summary> Example: </summary> Rewrite $\log_3(5x^6)$ as simple natural logarithms | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given expression | $\log_3(5x^6)$ | | Use the change of base formula: $\log_b(A) = \frac{\ln(A)}{\ln(b)}$ to convert the logarithm to natural logarithms. | $\frac{\ln(5x^6)}{\ln(3)}$ | | Apply the product rule: $\ln(AB) = \ln(A) + \ln(B)$ | $\frac{\ln(5) + \ln(x^6)}{\ln(3)}$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$ to $\ln(x^6)$ | $\frac{\ln(5) + 6\ln(x)}{\ln(3)}$ | ### Final Expression: $$ \log_3(5x^6) = \frac{\ln(5) + 6\ln(x)}{\ln(3)} $$ ::: #### f) Rewrite $\log_{10}\left(\frac{100}{2x^3}\right)$: ::: spoiler <summary> Example: </summary> Rewrite $\log_{10}\left(\frac{1000}{3x^4}\right)$ as simple natural logarithms | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given expression | $\log_{10}\left(\frac{1000}{3x^4}\right)$ | | Use the change of base formula: $\log_b(A) = \frac{\ln(A)}{\ln(b)}$ to convert the logarithm to natural logarithms. | $\frac{\ln\left(\frac{1000}{3x^4}\right)}{\ln(10)}$ | | Apply the quotient rule: $\ln\left(\frac{A}{B}\right) = \ln(A) - \ln(B)$ | $\frac{\ln(1000) - \ln(3x^4)}{\ln(10)}$ | | Apply the product rule: $\ln(AB) = \ln(A) + \ln(B)$ to $\ln(3x^4)$ | $\frac{\ln(1000) - [\ln(3) + \ln(x^4)]}{\ln(10)}$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$ to $\ln(x^4)$ | $\frac{\ln(1000) - \ln(3) - 4\ln(x)}{\ln(10)}$ | ### Final Expression: $$ \log_{10}\left(\frac{1000}{3x^4}\right) = \frac{\ln(1000) - \ln(3) - 4\ln(x)}{\ln(10)} $$ ::: --- ### Question 2: Find $f'(x)$ #### a) For $f(x) = 5e^x + 3x + 1$: ::: spoiler <summary> Example: </summary> ### Find $f'(x)$ for $f(x) = 3e^x + 4x + 2$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = 3e^x + 4x + 2$ | | Differentiate $3e^x$. The derivative of $e^x$ is $e^x$, so $3e^x$ becomes $3e^x$. | $f'(x) = 3e^x + \dots$ | | Differentiate $4x$. The derivative of $x$ is $1$, so $4x$ becomes $4$. | $f'(x) = 3e^x + 4 + \dots$ | | The derivative of the constant $2$ is $0$. | $f'(x) = 3e^x + 4$ | ### Final Expression: $$ f'(x) = 3e^x + 4 $$ ::: #### b) For $f(x) = 6\ln(x) - x^3 + 2$: ::: spoiler <summary> Example: </summary> ### Find $f'(x)$ for $f(x) = 7\ln(x) - x^5 + 4$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = 7\ln(x) - x^5 + 4$ | | Differentiate $7\ln(x)$. The derivative of $\ln(x)$ is $\frac{1}{x}$, so $7\ln(x)$ becomes $7 \cdot \frac{1}{x} = \frac{7}{x}$. | $f'(x) = \frac{7}{x} - \dots$ | | Differentiate $-x^5$. Use the power rule: $\frac{d}{dx}(x^n) = nx^{n-1}$, so $-x^5$ becomes $-5x^4$. | $f'(x) = \frac{7}{x} - 5x^4 + \dots$ | | The derivative of the constant $4$ is $0$. | $f'(x) = \frac{7}{x} - 5x^4$ | ### Final Expression: $$ f'(x) = \frac{7}{x} - 5x^4 $$ ::: #### c) For $f(x) = \ln(x^8)$: ::: spoiler <summary> Example: </summary> ### Find $f'(x)$ for $f(x) = \ln(x^9)$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = \ln(x^9)$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$. Rewrite $\ln(x^9)$ as $9\ln(x)$. | $f(x) = 9\ln(x)$ | | Differentiate $9\ln(x)$. The derivative of $\ln(x)$ is $\frac{1}{x}$, so $9\ln(x)$ becomes $9 \cdot \frac{1}{x} = \frac{9}{x}$. | $f'(x) = \frac{9}{x}$ | ### Final Expression: $$ f'(x) = \frac{9}{x} $$ ::: #### d) For $f(x) = \ln(x^{10}) + 2\ln(x)$: ::: spoiler <summary> Example: </summary> ### Find $f'(x)$ for $f(x) = \ln(x^{11}) + 4\ln(x)$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = \ln(x^{11}) + 4\ln(x)$ | | Apply the power rule: $\ln(A^B) = B\ln(A)$. Rewrite $\ln(x^{11})$ as $11\ln(x)$. | $f(x) = 11\ln(x) + 4\ln(x)$ | | Combine like terms: $11\ln(x) + 4\ln(x) = 15\ln(x)$. | $f(x) = 15\ln(x)$ | | Differentiate $15\ln(x)$. The derivative of $\ln(x)$ is $\frac{1}{x}$, so $15\ln(x)$ becomes $15 \cdot \frac{1}{x} = \frac{15}{x}$. | $f'(x) = \frac{15}{x}$ | ### Final Expression: $$ f'(x) = \frac{15}{x} $$ ::: --- ### Question 3: Find the equation of the tangent line to the graph of $f(x)$ at $x = 1$ Given: $f(x) = 3 + \ln(x)$ ::: spoiler <summary> Example: </summary> ### Find the equation of the tangent line to the graph of $f(x)$ at $x = 2$ Given: $f(x) = 4 + \ln(x)$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = 4 + \ln(x)$ | | Find the derivative $f'(x)$. The derivative of $\ln(x)$ is $\frac{1}{x}$. | $f'(x) = \frac{1}{x}$ | | Evaluate the slope at $x = 2$. | $f'(2) = \frac{1}{2}$ | | Find $f(2)$ by substituting $x = 2$ into $f(x)$. | $f(2) = 4 + \ln(2)$ | | Use point-slope form: $y - f(a) = f'(a)(x - a)$. Substitute $f'(2) = \frac{1}{2}$ and $f(2) = 4 + \ln(2)$. | $y - (4 + \ln(2)) = \frac{1}{2}(x - 2)$ | | Distribute the $\frac{1}{2}$ to simplify the equation. | $y = \frac{1}{2}x - 1 + 4 + \ln(2)$ | | Simplify further. | $y = \frac{1}{2}x + 3 + \ln(2)$ | ### Final Equation of the Tangent Line: $$ y = \frac{1}{2}x + 3 + \ln(2) $$  ::: --- ### Question 4: Find the equation of the tangent line to the graph of $f(x)$ at $x = 0$ Given: $f(x) = e^x + 1$ ::: spoiler <summary> Example: </summary> ### Question 4: Find the equation of the tangent line to the graph of $f(x)$ at $x = 1$ Given: $f(x) = e^x + 2$ | Explanation | Expression | |--------------------------------------------------|---------------------------------------| | Start with the given function | $f(x) = e^x + 2$ | | Find the derivative $f'(x)$. The derivative of $e^x$ is $e^x$, and the constant 2 has a derivative of 0. | $f'(x) = e^x$ | | Evaluate the slope at $x = 1$. | $f'(1) = e^1 = e$ | | Find $f(1)$ by substituting $x = 1$ into $f(x)$. | $f(1) = e^1 + 2 = e + 2$ | | Use the point-slope form: $y - f(a) = f'(a)(x - a)$. Substitute $f'(1) = e$ and $f(1) = e + 2$. | $y - (e + 2) = e(x - 1)$ | | Distribute $e$ to simplify the equation. | $y = e(x - 1) + e + 2$ | | Simplify further. | $y = ex - e + e + 2 = ex + 2$ | ### Final Equation of the Tangent Line: $$ y = ex + 2 $$  :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up