### Question 1: Write each function $f(x)$ as a function composition $f(x) = g(u), u = u(x)$. Evaluate for $x = 2$ #### (a) For $f(x) = \frac{2}{3x^2 - 1}$: | Outside Function | Inside Function | | --- | --- | |$g(u) \hspace{3cm}$ | $u= \hspace{3cm}$| <details> <summary> Example: </summary> We want to express the function $f(x) = \frac{3}{2x^2 - 5}$ as a composition of functions $f(x) = g(u)$ and $u = u(x)$. ### Step 1: Define $u(x)$ Let $u(x) = 2x^2 - 5$. This is the expression inside the denominator. ### Step 2: Define $g(u)$ Now, express $f(x)$ in terms of $u$. Since $f(x) = \frac{3}{2x^2 - 5}$, we can write: $$ g(u) = \frac{3}{u} $$ Thus, we have: $$ f(x) = g(u(x)) = g(2x^2 - 5) = \frac{3}{2x^2 - 5} $$ | Outside Function | Inside Function | | --- | --- | | $g(u) = \dfrac{3}{u}$ | $u = 2x^2 - 5$ | ### Step 3: Evaluate at $x = 2$ Now, substitute $x = 2$ into $u(x)$: $$ u(2) = 2(2)^2 - 5 = 2(4) - 5 = 8 - 5 = 3 $$ Now, evaluate $g(u)$ at $u = 3$: $$ g(3) = \frac{3}{3} = 1 $$ Thus, $f(2) = 1$. </details> #### (b) For $f(x) = -\frac{3}{(5 - 2x)^3}$: | Outside Function | Inside Function | | --- | --- | |$g(u) \hspace{3cm}$ | $u=\hspace{3cm}$| <details> <summary> Example: </summary> For $f(x) = -\frac{4}{(5 - 3x)^2}$: We want to express the function $f(x) = -\frac{4}{(5 - 3x)^2}$ as a composition of functions $f(x) = g(u)$ and $u = u(x)$. ### Step 1: Define $u(x)$ Let $u(x) = 5 - 3x$. This is the expression inside the parentheses. ### Step 2: Define $g(u)$ Now, express $f(x)$ in terms of $u$. Since $f(x) = -\frac{4}{(5 - 3x)^2}$, we can write: $$ g(u) = -\frac{4}{u^2} $$ Thus, we have: $$ f(x) = g(u(x)) = g(5 - 3x) = -\frac{4}{(5 - 3x)^2} $$ | Outside Function | Inside Function | | --- | --- | | $g(u) = -\frac{4}{u^2}$ | $u = 5 - 3x$ | ### Step 3: Evaluate at $x = 2$ Now, substitute $x = 2$ into $u(x)$: $$ u(2) = 5 - 3(2) = 5 - 6 = -1 $$ Now, evaluate $g(u)$ at $u = -1$: $$ g(-1) = -\frac{4}{(-1)^2} = -\frac{4}{1} = -4 $$ Thus, $f(2) = -4$. </details> #### (c) For $f(x) = 2\ln(3x^4 - 2x^2)$: | Outside Function | Inside Function | | --- | --- | |$g(u) \hspace{3cm}$ | $u=\hspace{3cm}$| <details> <summary> Example: </summary> We want to express the function $f(x) = 3\ln(2x^3 - 4x)$ as a composition of functions $f(x) = g(u)$ and $u = u(x)$. ### Step 1: Define $u(x)$ Let $u(x) = 2x^3 - 4x$. This is the expression inside the logarithm. ### Step 2: Define $g(u)$ Now, express $f(x)$ in terms of $u$. Since $f(x) = 3\ln(2x^3 - 4x)$, we can write: $$ g(u) = 3\ln(u) $$ Thus, we have: $$ f(x) = g(u(x)) = g(2x^3 - 4x) = 3\ln(2x^3 - 4x) $$ | Outside Function | Inside Function | | --- | --- | | $g(u) = 3\ln(u)$ | $u = 2x^3 - 4x$ | ### Step 3: Evaluate at $x = 2$ Now, substitute $x = 2$ into $u(x)$: $$ u(2) = 2(2)^3 - 4(2) = 2(8) - 8 = 16 - 8 = 8 $$ Now, evaluate $g(u)$ at $u = 8$: $$ g(8) = 3\ln(8) $$ Thus, $f(2) = 3\ln(8)$. </details> --- ### Question 2: Find the following derivatives #### (a) For $f(x) = xe^x$: $$ f'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function $f(x) = x^2 e^x$. We will use the product rule to find the derivative. ### Derivative Table | | First Function | Second Function | | --- | --- | --- | | **Original** | $x^2$ | $e^x$ | | **Derivative** | $2x$ | $e^x$ | Using the product rule: $$ f'(x) = (2x)(e^x) + (x^2)(e^x) $$ ### Step 2: Simplify Factor out the common term $xe^x$: $$ f'(x) = xe^x(2 + x) $$ Thus, the derivative of $f(x) = x^2 e^x$ is: $$ f'(x) = xe^x(2 + x) $$ </details> #### (b) For $g(x) = x\ln(x)$: $$ g'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function $f(x) = x^2 \ln x$. We will use the product rule to find the derivative. ### Derivative Table | | First Function | Second Function | | --- | --- | --- | | **Original** | $x^2$ | $\ln x$ | | **Derivative** | $2x$ | $\frac{1}{x}$ | Using the product rule: $$ f'(x) = (2x)(\ln x) + (x^2)\left(\frac{1}{x}\right) $$ ### Step 2: Simplify Simplify the second term: $$ f'(x) = 2x \ln x + x $$ Thus, the derivative of $f(x) = x^2 \ln x$ is: $$ f'(x) = 2x \ln x + x $$ </details> #### (c) For $h(x) = \frac{x}{x - 1}$: $$ h'(x) = $$ <details> <summary> Example: </summary> We are tasked with finding the derivative of the function $h(x) = \frac{x}{x - 2}$. We will use the quotient rule to find the derivative. ### Quotient Rule The quotient rule states that for two functions $u(x)$ and $v(x)$, the derivative of their quotient is: $$ h'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2} $$ Let: - $u(x) = x$ - $v(x) = x - 2$ ### Derivative Table | | Numerator (First Function) | Denominator (Second Function) | | --- | --- | --- | | **Original** | $x$ | $x - 2$ | | **Derivative** | $1$ | $1$ | Using the quotient rule: $$ h'(x) = \frac{(1)(x - 2) - (x)(1)}{(x - 2)^2} $$ ### Step 2: Simplify Simplify the expression: $$ h'(x) = \frac{x - 2 - x}{(x - 2)^2} = \frac{-2}{(x - 2)^2} $$ Thus, the derivative of $h(x) = \frac{x}{x - 2}$ is: $$ h'(x) = \frac{-2}{(x - 2)^2} $$ </details> ### Question 3: Find each indefinite integral #### (a) $$ \int (3x + 5)^5 (3) \, dx = $$ <details> <summary> Example: </summary> $$ \int (4x + 3)^2 (4) \, dx = $$ The simplest way to approach this integral using $u$-substitution is to solve for $dx$ so that the $4$ cancels out. ### Step 1: Let $u = 4x + 3$ Differentiate both sides to find $dx$: $$ du = 4 \, dx $$ Solve for $dx$: $$ dx = \frac{du}{4} $$ ### Step 2: Substitute into the integral Now substitute $u = 4x + 3$ and $dx = \frac{du}{4}$ into the integral: $$ \int (4x + 3)^2 (4) \, dx = \int u^2 (4) \left( \frac{du}{4} \right) $$ The $4$ cancels out: $$ \int u^2 \, du $$ ### Step 3: Integrate Now integrate $u^2$: $$ \int u^2 \, du = \frac{u^3}{3} + C $$ ### Step 4: Substitute $u = 4x + 3$ back Substitute $u = 4x + 3$ back into the result: $$ \frac{(4x + 3)^3}{3} + C $$ Thus, the integral is: $$ \int (4x + 3)^2 (4) \, dx = \frac{(4x + 3)^3}{3} + C $$ </details> #### (b) $$ \int \frac{1}{1 + x^2} (2x) \, dx = $$ <details> <summary> Example: </summary> $$ \int \frac{1}{1 + x^3} (3x^2) \, dx = $$ The simplest way to approach this integral using $u$-substitution is to solve for $dx$ so that the $3x^2$ cancels out. ### Step 1: Let $u = 1 + x^3$ Differentiate both sides to find $dx$: $$ du = 3x^2 \, dx $$ Solve for $dx$: $$ dx = \frac{du}{3x^2} $$ ### Step 2: Substitute into the integral Now substitute $u = 1 + x^3$ and $dx = \frac{du}{3x^2}$ into the integral: $$ \int \frac{1}{1 + x^3} (3x^2) \, dx = \int \frac{1}{u} (3x^2) \left( \frac{du}{3x^2} \right) $$ The $3x^2$ cancels out: $$ \int \frac{1}{u} \, du $$ ### Step 3: Integrate Now integrate $\frac{1}{u}$: $$ \int \frac{1}{u} \, du = \ln|u| + C $$ ### Step 4: Substitute $u = 1 + x^3$ back Substitute $u = 1 + x^3$ back into the result: $$ \ln|1 + x^3| + C $$ Thus, the integral is: $$ \int \frac{1}{1 + x^3} (3x^2) \, dx = \ln|1 + x^3| + C $$ </details> #### (c) $$ \int \frac{t^2}{(t^3 - 2)^5} \, dt = $$ <details> <summary> Example: </summary> $$ \int \frac{t^3}{(t^4 - 1)^5} \, dt = $$ The simplest way to approach this integral using $u$-substitution is to find an expression for $u$ and solve for $dt$ so that the expression simplifies. ### Step 1: Let $u = t^4 - 1$ Differentiate both sides to find $dt$: $$ du = 4t^3 \, dt $$ Solve for $dt$: $$ dt = \frac{du}{4t^3} $$ ### Step 2: Substitute into the integral Now substitute $u = t^4 - 1$ and $dt = \frac{du}{4t^3}$ into the integral: $$ \int \frac{t^3}{(t^4 - 1)^5} \, dt = \int \frac{t^3}{u^5} \left( \frac{du}{4t^3} \right) $$ The $t^3$ cancels out: $$ \int \frac{1}{4u^5} \, du=\dfrac{1}{4} \int u^{-5} \, du $$ ### Step 3: Integrate Now integrate $\dfrac{1}{4} \int u^{-5} \, du$: $$ \dfrac{1}{4} \int u^{-5} \, du = \frac{1}{4} \cdot \frac{u^{-4}}{-4} + C = -\frac{1}{16u^4} + C $$ ### Step 4: Substitute $u = t^4 - 1$ back Substitute $u = t^4 - 1$ back into the result: $$ -\frac{1}{16(t^4 - 1)^4} + C $$ Thus, the integral is: $$ \int \frac{t^3}{(t^4 - 1)^5} \, dt = -\frac{1}{16(t^4 - 1)^4} + C $$ </details> #### (d) $$ \int \frac{x^3}{\sqrt{3x^4 + 1}} \, dx = $$ <details> <summary> Example: </summary> $$ \int \frac{x^4}{\sqrt{2x^5 + 3}} \, dx = $$ We are tasked with finding the integral of the function $\int \frac{x^4}{\sqrt{2x^5 + 3}} \, dx$. We will use $u$-substitution and simplify the integrand before integrating. ### Step 1: Let $u = 2x^5 + 3$ Differentiate both sides to find $dx$: $$ du = 10x^4 \, dx $$ Solve for $dx$: $$ dx = \frac{du}{10x^4} $$ ### Step 2: Substitute into the integral Substitute $u = 2x^5 + 3$ and $dx = \frac{du}{10x^4}$ into the integral: $$ \int \frac{x^4}{\sqrt{2x^5 + 3}} \, dx = \int \frac{x^4}{\sqrt{u}} \cdot \frac{du}{10x^4} $$ The $x^4$ cancels out: $$ \frac{1}{10} \int \frac{1}{\sqrt{u}} \, du $$ ### Step 3: Simplify the integrand We can rewrite the integrand as $u^{-1/2}$: $$ \frac{1}{10} \int u^{-1/2} \, du $$ ### Step 4: Integrate Now integrate $u^{-1/2}$: $$ \frac{1}{10} \cdot \frac{u^{1/2}}{1/2} = \frac{1}{10} \cdot 2u^{1/2} = \frac{1}{5} u^{1/2} + C $$ ### Step 5: Substitute $u = 2x^5 + 3$ back Substitute $u = 2x^5 + 3$ back into the result: $$ \frac{1}{5} \sqrt{2x^5 + 3} + C $$ Thus, the integral is: $$ \int \frac{x^4}{\sqrt{2x^5 + 3}} \, dx = \frac{1}{5} \sqrt{2x^5 + 3} + C $$ </details>