# In-Class Activity 2.1B ## Question 1 Simplify each expression, write without negative or fractional exponents. ### a. $\dfrac{x^3 (y^2z^3)^2}{\sqrt{x^5y^5} z^1}$ ::: spoiler <summary> Solution: </summary> We are given the expression: $$\frac{x^3 (y^2z^3)^2}{\sqrt{x^5y^5} z^1}$$ ### Step 1: Simplify the numerator First, simplify the expression in the numerator: $$(y^2z^3)^2$$ This means that both $y^2$ and $z^3$ are raised to the power of 2. Using the exponent rule $(a^m)^n = a^{m \cdot n}$, we get: $$y^{2 \cdot 2}z^{3 \cdot 2} = y^4z^6$$ Now, substitute this back into the numerator: $$x^3 \cdot y^4 \cdot z^6$$ ### Step 2: Simplify the denominator In the denominator, we have: $$\sqrt{x^5y^5} \cdot z^1$$ The square root of $x^5y^5$ can be simplified as: $$\sqrt{x^5y^5} = x^{5/2}y^{5/2}$$ So the denominator becomes: $$x^{5/2}y^{5/2} \cdot z^1$$ ### Step 3: Combine the expression Now, combine the numerator and denominator: $$\frac{x^3y^4z^6}{x^{5/2}y^{5/2}z^1}$$ ### Step 4: Apply exponent rules We will now simplify the expression using the quotient rule for exponents: $\frac{a^m}{a^n} = a^{m-n}$. #### Simplifying $x$ terms: $$\frac{x^3}{x^{5/2}} = x^{3 - 5/2} = x^{6/2 - 5/2} = x^{1/2}$$ #### Simplifying $y$ terms: $$\frac{y^4}{y^{5/2}} = y^{4 - 5/2} = y^{8/2 - 5/2} = y^{3/2}$$ #### Simplifying $z$ terms: $$\frac{z^6}{z^1} = z^{6 - 1} = z^5$$ ### Step 5: Final simplified expression The fully simplified expression is: $$x^{1/2}y^{3/2}z^5$$ Writing without fractional exponents, you can write the final answer as: $$\sqrt{xy^3} z^5$$ ::: ### b. $\dfrac{x^2\sqrt{y^5z^{-3}}}{(x^4y^{-3})^3z^2}$ ::: spoiler <summary> Solution: </summary> We are given the expression: $$\frac{x^2\sqrt{y^5z^{-3}}}{(x^4y^{-3})^3z^2}$$ ### Step 1: Simplify the square root in the numerator The square root can be rewritten as: $$\sqrt{y^5z^{-3}} = (y^5z^{-3})^{1/2} = y^{5/2}z^{-3/2}$$ Now, substitute this back into the numerator: $$x^2 \cdot y^{5/2} \cdot z^{-3/2}$$ ### Step 2: Simplify the denominator We now simplify the denominator: $$(x^4y^{-3})^3z^2$$ Apply the exponent rule $(a^m)^n = a^{m \cdot n}$: $$x^{4 \cdot 3}y^{-3 \cdot 3} = x^{12}y^{-9}$$ Now the denominator becomes: $$x^{12}y^{-9}z^2$$ ### Step 3: Combine the expression Now, combine the simplified numerator and denominator: $$\frac{x^2y^{5/2}z^{-3/2}}{x^{12}y^{-9}z^2}$$ ### Step 4: Apply exponent rules We will now simplify the expression using the quotient rule for exponents: $\frac{a^m}{a^n} = a^{m-n}$. #### Simplifying $x$ terms: $$\frac{x^2}{x^{12}} = x^{2 - 12} = x^{-10}$$ #### Simplifying $y$ terms: $$\frac{y^{5/2}}{y^{-9}} = y^{5/2 - (-9)} = y^{5/2 + 9} = y^{5/2 + 18/2} = y^{23/2}$$ #### Simplifying $z$ terms: $$\frac{z^{-3/2}}{z^2} = z^{-3/2 - 2} = z^{-3/2 - 4/2} = z^{-7/2}$$ ### Step 5: Convert fractional exponents to radicals - For $x^{-10}$, this is equivalent to $\dfrac{1}{x^{10}}$. - For $y^{23/2}$, this is equivalent to $\sqrt{y^{23}}$. - For $z^{-7/2}$, this is equivalent to $\frac{1}{\sqrt{z^7}}$. ### Step 6: Final simplified expression Now, write the final expression without fractional exponents: $$\dfrac{ \sqrt{y^{23}}}{x^{10}\sqrt{z^7}}$$ ::: ## Question 2 Let $$f(x)=2x^2-3x+5$$ $$g(x)=3x^2+5x-1$$ Simplify: ### a. $f(x+h)-f(x)$ ::: spoiler <summary> Solution: </summary> Let's begin by simplifying $f(x+h) - f(x)$, where $f(x) = 2x^2 - 3x + 5$. ### Step 1: Find $f(x+h)$ Substitute $x+h$ into $f(x)$: $$ f(x+h) = 2(x+h)^2 - 3(x+h) + 5 $$ Now expand the terms: $$ f(x+h) = 2(x^2 + 2xh + h^2) - 3(x + h) + 5 $$ $$ f(x+h) = 2x^2 + 4xh + 2h^2 - 3x - 3h + 5 $$ ### Step 2: Simplify $f(x+h) - f(x)$ Now subtract $f(x)$ from $f(x+h)$: $$ f(x+h) - f(x) = \left(2x^2 + 4xh + 2h^2 - 3x - 3h + 5\right) - \left(2x^2 - 3x + 5\right) $$ Distribute the negative sign: $$ f(x+h) - f(x) = \left(2x^2 + 4xh + 2h^2 - 3x - 3h + 5\right) - 2x^2 + 3x - 5 $$ ### Step 3: Cancel out like terms Cancel the terms that appear in both $f(x+h)$ and $f(x)$: $$ f(x+h) - f(x) = 4xh + 2h^2 - 3h $$ ### Final Answer: $$ f(x+h) - f(x) = 4xh + 2h^2 - 3h $$ ::: ### b. $g(x+h)-g(x-h)$ ::: spoiler <summary> Solution: </summary> Let's simplify $g(x+h) - g(x-h)$, where $g(x) = 3x^2 + 5x - 1$. ### Step 1: Find $g(x+h)$ Substitute $x+h$ into $g(x)$: $$ g(x+h) = 3(x+h)^2 + 5(x+h) - 1 $$ Now expand the terms: $$ g(x+h) = 3(x^2 + 2xh + h^2) + 5(x + h) - 1 $$ $$ g(x+h) = 3x^2 + 6xh + 3h^2 + 5x + 5h - 1 $$ ### Step 2: Find $g(x-h)$ Substitute $x-h$ into $g(x)$: $$ g(x-h) = 3(x-h)^2 + 5(x-h) - 1 $$ Now expand the terms: $$ g(x-h) = 3(x^2 - 2xh + h^2) + 5(x - h) - 1 $$ $$ g(x-h) = 3x^2 - 6xh + 3h^2 + 5x - 5h - 1 $$ ### Step 3: Simplify $g(x+h) - g(x-h)$ Now subtract $g(x-h)$ from $g(x+h)$: $$ g(x+h) - g(x-h) = \left(3x^2 + 6xh + 3h^2 + 5x + 5h - 1\right) - \left(3x^2 - 6xh + 3h^2 + 5x - 5h - 1\right) $$ Distribute the negative sign: $$ g(x+h) - g(x-h) = \left(3x^2 + 6xh + 3h^2 + 5x + 5h - 1\right) - 3x^2 + 6xh - 3h^2 - 5x + 5h + 1 $$ ### Step 4: Cancel out like terms Cancel the terms that appear in both $g(x+h)$ and $g(x-h)$: $$ g(x+h) - g(x-h) = 6xh + 5h + 6xh + 5h $$ Simplify the expression: $$ g(x+h) - g(x-h) = 12xh + 10h $$ ### Final Answer: $$ g(x+h) - g(x-h) = 12xh + 10h $$ ::: ## Question 3 Let $$f(x)=\dfrac{2x^2-3x-2}{x^2+x-6}$$ ::: spoiler <summary> Simplification (ALWAYS SIMPLIFY BEFORE PLUGGING IN LIMITS!!!!): </summary> ### Simplification of $\dfrac{2x^2 - 3x - 2}{x^2 + x - 6}$ #### Step 1: Factor the numerator and the denominator 1. **Factor the numerator** $2x^2 - 3x - 2$: The factored form is: $$ 2x^2 - 3x - 2 = (2x + 1)(x - 2) $$ Verify by expanding: $$ (2x + 1)(x - 2) $$ | | $x$ | $-2$ | |--------|--------|--------| | $2x$ | $2x \cdot x = 2x^2$ | $2x \cdot (-2) = -4x$ | | $1$ | $1 \cdot x = x$ | $1 \cdot (-2) = -2$ | Combine the terms: $$ 2x^2 - 4x + x - 2 = 2x^2 - 3x - 2 $$ 2. **Factor the denominator** $x^2 + x - 6$: The factored form is: $$ x^2 + x - 6 = (x + 3)(x - 2) $$ Verify by expanding: $$ (x + 3)(x - 2) $$ | | $x$ | $-2$ | |--------|--------|--------| | $x$ | $x \cdot x = x^2$ | $x \cdot (-2) = -2x$ | | $3$ | $3 \cdot x = 3x$ | $3 \cdot (-2) = -6$ | Combine the terms: $$ x^2 - 2x + 3x - 6 = x^2 + x - 6 $$ #### Step 2: Simplify the expression Now, the expression becomes: $$ \dfrac{(2x + 1)(x - 2)}{(x + 3)(x - 2)} $$ Since $(x - 2)$ appears in both the numerator and the denominator, cancel it out: $$ \dfrac{2x + 1}{x + 3} $$ #### Final Simplified Form: The simplified function is: $$ f(x)=\dfrac{2x + 1}{x + 3} $$ ::: Find: ### a. $\displaystyle \lim_{x \to 2}f(x)$ ::: spoiler <summary> Solution: </summary> \begin{align} \lim_{x \to 2} f(x)&=\lim_{x \to 2} \dfrac{2x + 1}{x + 3} \\ &=\dfrac{2(2)+1}{2+3} \\ &=\dfrac{5}{5} \\ &=1 \end{align} ::: ### b. $\displaystyle \lim_{x \to 0}f(x)$ ::: spoiler <summary> Solution: </summary> \begin{align} \lim_{x \to 0} f(x)&=\lim_{x \to 0} \dfrac{2x + 1}{x + 3} \\ &=\dfrac{2(0)+1}{0+3} \\ &=\dfrac{1}{3} \end{align} ::: ### c. $\displaystyle \lim_{x \to 1}f(x)$ ::: spoiler <summary> Solution: </summary> \begin{align} \lim_{x \to 1} f(x)&=\lim_{x \to 1} \dfrac{2x + 1}{x + 3} \\ &=\dfrac{2(1)+1}{1+3} \\ &=\dfrac{3}{4} \end{align} ::: ## Question 4 Let $$f(x)=-4x+13$$ Find: $$\displaystyle \lim_{h \to 0} \dfrac{f(2+h)-f(2)}{h}$$ ::: spoiler <summary> Solution: </summary> ### Given Function: $$f(x) = -4x + 13$$ We need to find: $$ \lim_{h \to 0} \dfrac{f(2+h)-f(2)}{h} $$ #### Step 1: Find $f(2+h)$ and $f(2)$ 1. **Find $f(2+h)$**: Using the function $f(x) = -4x + 13$, substitute $x = 2+h$: $$ f(2+h) = -4(2+h) + 13 $$ Expand: $$ f(2+h) = -4 \cdot 2 - 4 \cdot h + 13 = -8 - 4h + 13 = 5 - 4h $$ 2. **Find $f(2)$**: Substitute $x = 2$ into the function: $$ f(2) = -4(2) + 13 = -8 + 13 = 5 $$ #### Step 2: Plug into the limit expression Now, substitute $f(2+h) = 5 - 4h$ and $f(2) = 5$ into the limit expression: $$ \lim_{h \to 0} \dfrac{(5 - 4h) - 5}{h} $$ Simplify the numerator: $$ \lim_{h \to 0} \dfrac{5 - 4h - 5}{h} = \lim_{h \to 0} \dfrac{-4h}{h} $$ Cancel the $h$ terms: $$ \lim_{h \to 0} -4 = -4 $$ #### Final Answer: $$ \lim_{h \to 0} \dfrac{f(2+h)-f(2)}{h} = -4 $$ :::