# Chain Rule: Derivatives of the Form $\ln(g(x))$ --- ### **Example 1:** Find the derivative of $$ f(x) = \ln(2x) $$ **Solution:** - Here, $g(x) = 2x$, so $g'(x) = 2$. - Using the chain rule: $$ f'(x) = \frac{1}{2x} \cdot 2 = \frac{2}{2x} = \frac{1}{x} $$ --- ### **Example 2:** Find the derivative of $$ f(x) = \ln(x^2) $$ **Solution:** - Here, $g(x) = x^2$, so $g'(x) = 2x$. - Using the chain rule: $$ f'(x) = \frac{1}{x^2} \cdot 2x = \frac{2x}{x^2} = \frac{2}{x} $$ --- ### **Example 3:** Find the derivative of $$ f(x) = \ln(x^3 + 1) $$ **Solution:** - Here, $g(x) = x^3 + 1$, so $g'(x) = 3x^2$. - Using the chain rule: $$ f'(x) = \frac{1}{x^3 + 1} \cdot 3x^2 = \frac{3x^2}{x^3 + 1} $$ --- ### **Example 4:** Find the derivative of $$ f(x) = \ln(5x^4 - x) $$ **Solution:** - Here, $g(x) = 5x^4 - x$, so $g'(x) = 20x^3 - 1$. - Using the chain rule: $$ f'(x) = \frac{1}{5x^4 - x} \cdot (20x^3 - 1) = \frac{20x^3 - 1}{5x^4 - x} $$ --- ### **Example 5:** Find the derivative of $$ f(x) = \ln\left(\frac{1}{x}\right) $$ **Solution:** - Here, $g(x) = \frac{1}{x} = x^{-1}$, so $g'(x) = -x^{-2}$. - Using the chain rule: $$ f'(x) = \frac{1}{x^{-1}} \cdot (-x^{-2}) = (-x^{-2}) \cdot x = -\frac{1}{x} $$ --- ### **Example 6:** Find the derivative of $$ f(x) = \ln(\sqrt{x}) $$ **Solution:** - Here, $g(x) = \sqrt{x} = x^{1/2}$, so $g'(x) = \frac{1}{2}x^{-1/2}$. - Using the chain rule: $$ f'(x) = \frac{1}{x^{1/2}} \cdot \frac{1}{2}x^{-1/2} = \frac{1}{x^{1/2}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2x} $$ --- ### **Example 7:** Find the derivative of $$ f(x) = \ln(x + 4) $$ **Solution:** - Here, $g(x) = x + 4$, so $g'(x) = 1$. - Using the chain rule: $$ f'(x) = \frac{1}{x + 4} \cdot 1 = \frac{1}{x + 4} $$ --- ### **Example 8:** Find the derivative of $$ f(x) = \ln(3x^5) $$ **Solution:** - Here, $g(x) = 3x^5$, so $g'(x) = 15x^4$. - Using the chain rule: $$ f'(x) = \frac{1}{3x^5} \cdot 15x^4 = \frac{15x^4}{3x^5} = \frac{5}{x} $$ --- ### **Example 9:** Find the derivative of $$ f(x) = \ln(x^2 - 3x + 1) $$ **Solution:** - Here, $g(x) = x^2 - 3x + 1$, so $g'(x) = 2x - 3$. - Using the chain rule: $$ f'(x) = \frac{1}{x^2 - 3x + 1} \cdot (2x - 3) = \frac{2x - 3}{x^2 - 3x + 1} $$ --- ### **Example 10:** Find the derivative of $$ f(x) = \ln(x^{-3}) $$ **Solution:** - Here, $g(x) = x^{-3}$, so $g'(x) = -3x^{-4}$. - Using the chain rule: $$ f'(x) = \frac{1}{x^{-3}} \cdot (-3x^{-4}) = -3x^{-4} \cdot x^3 = -\frac{3}{x} $$ --- # Summary For derivatives of the form $\ln(g(x))$, use the chain rule: $$ \frac{d}{dx}[\ln(g(x))] = \frac{1}{g(x)} \cdot g'(x) $$ You first differentiate $g(x)$, then divide $g'(x)$ by $g(x)$. Be careful when applying the quotient rule or chain rule within $g(x)$ if it is more complex.