# Question 1. Find the critical values for each function. ## a. $f(x)=6x-4$ <details> <summary> Example: </summary> Find the critical values for $f(x)=5x-7$: ### Solution: To find the critical values of the function, we need to take the derivative of $f(x)$ and set it equal to zero. 1. **Find the derivative of $f(x)$:** Since $f(x) = 5x - 7$, the derivative of $f(x)$ is: $f'(x) = 5$ 2. **Set the derivative equal to zero and solve for $x$:** $f'(x) = 5 = 0$ This equation has no solution, since 5 is a constant and cannot be equal to zero. ### Conclusion: There are no critical values for the function $f(x) = 5x - 7$, as the derivative is a constant and never equals zero. </details> ## b. $g(x)=3x^2+12x+12$ <details> <summary> Example: </summary> Find the critical numbers for $f(x) = 4x^2 + 24x + 36$ ### Solution: To find the critical numbers, we first take the derivative of $f(x)$ and then set it equal to zero. 1. **Find the derivative of $f(x)$:** Since $f(x) = 4x^2 + 24x + 36$, we apply the power rule to differentiate: $$ f'(x) = 8x + 24 $$ 2. **Set the derivative equal to zero and solve for $x$:** $$ 8x + 24 = 0 $$ Solving for $x$: $$ 8x = -24 $$ $$ x = -3 $$ ### Conclusion: The critical number for the function $f(x) = 4x^2 + 24x + 36$ is $x = -3$. </details> ## c. $h(x)=-x^3-3x^2+24x+5$ <details> <summary> Example: </summary> Find the critical values for the function $h(x) = 2x^3 + 3x^2 - 36x + 5$ ### Solution: To find the critical values, we first take the derivative of $h(x)$ and then set it equal to zero. 1. **Find the derivative of $h(x)$:** Since $h(x) = 2x^3 + 3x^2 - 36x + 5$, we differentiate term by term: $$ h'(x) = 6x^2 + 6x - 36 $$ 2. **Set the derivative equal to zero and solve for $x$:** $$ 6x^2 + 6x - 36 = 0 $$ Simplifying by dividing through by 6: $$ x^2 + x - 6 = 0 $$ Factor the quadratic equation: $$ (x + 3)(x - 2) = 0 $$ Solving for $x$: $$ x = -3 \quad \text{or} \quad x = 2 $$ ### Conclusion: The critical values for the function $h(x) = 2x^3 + 3x^2 - 36x + 5$ are $x = -3$ and $x = 2$. </details> ## d. $i(x)=2\ln x-x^2$ <details> <summary> Example: </summary> Find the critical values for the function $f(x) = 8 \ln(x) - x^2$ ### Solution: To find the critical values, we first take the derivative of $f(x)$ and then set it equal to zero. 1. **Find the derivative of $f(x)$:** The derivative of $f(x) = 8 \ln(x) - x^2$ is: $$ f'(x) = \frac{8}{x} - 2x $$ 2. **Set the derivative equal to zero and solve for $x$:** $$ \frac{8}{x} - 2x = 0 $$ Multiply through by $x$ to eliminate the fraction: $$ 8 - 2x^2 = 0 $$ Solving for $x$: $$ 2x^2 = 8 $$ $$ x^2 = 4 $$ $$ x = 2 \quad \text{(since $x > 0$ for $\ln(x)$ to be defined)} $$ ### Conclusion: The critical value for the function $f(x) = 8 \ln(x) - x^2$ is $x = 2$. </details> ## e. $j(x)=e^{3x^2+2x}$ <details> <summary> Example: </summary> Find the critical values for the function $j(x) = e^{4x^2 + 5x}$ ### Solution: To find the critical values, we first take the derivative of $j(x)$ and then set it equal to zero. 1. **Find the derivative of $j(x)$:** Using the chain rule, the derivative of $j(x) = e^{4x^2 + 5x}$ is: $$ j'(x) = e^{4x^2 + 5x} \cdot (8x + 5) $$ 2. **Set the derivative equal to zero and solve for $x$:** Since $e^{4x^2 + 5x}$ is never zero, we set the factor $(8x + 5)$ equal to zero: $$ 8x + 5 = 0 $$ Solving for $x$: $$ x = -\frac{5}{8} $$ ### Conclusion: The critical value for the function $j(x) = e^{4x^2 + 5x}$ is $x = -\frac{5}{8}$. </details> # Question 2. Find the absolute minimum and maximum over the indicated intervals: ![image](https://hackmd.io/_uploads/S1KUBKYC0.png) ## a. $[1,9]$ <details> <summary> Example: </summary> Find the absolute minimum and maximum on the interval $[1,4]$. The graph has an absolute maximum at the point $(3,9)$. The graph has an absolute minimum at the point $(1,5)$. </details> ## b. $[5,8]$ <details> <summary> Example: </summary> Find the absolute minimum and maximum of the graph on the interval $[3,10]$. The graph has an absolute minimum at the point $(7,5)$. The graph has an absolute maximum at the point $(10,15)$. </details> # Question 3. Find the absolute minimum value on $(0,\infty)$ for $$f(x)=x+\dfrac{1}{x}+\dfrac{30}{x^3}$$ <details> <summary> Example: </summary> ### Question: Find the absolute minimum value on $(0, \infty)$ for $$ g(x) = x + \frac{2}{x} + \frac{40}{x^3} $$ ### Solution: To find the absolute minimum value, we first determine the critical points by finding the derivative of $g(x)$, setting it equal to zero, and solving for $x$. Then, we verify if it’s a minimum using the second derivative test and evaluate the function at the critical points to find the minimum value. 1. **Find the derivative of $g(x)$:** Using the power rule and the chain rule, we differentiate each term of $g(x)$: $$ g'(x) = 1 - \frac{2}{x^2} - \frac{120}{x^4} $$ 2. **Set the derivative equal to zero and solve for $x$:** Set $g'(x) = 0$: $$ 1 - \frac{2}{x^2} - \frac{120}{x^4} = 0 $$ Multiply through by $x^4$ to eliminate the fractions: $$ x^4 - 2x^2 - 120 = 0 $$ Let $z = x^2$, so the equation becomes a quadratic: $$ z^2 - 2z - 120 = 0 $$ Solve this quadratic using the quadratic formula: $$ z = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-120)}}{2(1)} = \frac{2 \pm \sqrt{4 + 480}}{2} = \frac{2 \pm \sqrt{484}}{2} = \frac{2 \pm 22}{2} $$ This gives: $$ z = 12 \quad \text{or} \quad z = -10 $$ Since $z = x^2$, and $x^2 \geq 0$, we discard $z = -10$. Thus, $z = 12$. Therefore, $x^2 = 12$, so: $$ x = \sqrt{12} $$ 3. **Use the second derivative test to verify it's a minimum:** We now calculate the second derivative of $g(x)$: $$ g''(x) = \frac{4}{x^3} + \frac{480}{x^5} $$ Substitute $x = \sqrt{12}$ into the second derivative: $$ g''(\sqrt{12}) = \frac{4}{(\sqrt{12})^3} + \frac{480}{(\sqrt{12})^5} $$ Since $\sqrt{12} = 2\sqrt{3}$, we simplify the terms: $$ g''(\sqrt{12}) = \frac{4}{12\sqrt{12}} + \frac{480}{144\sqrt{12}} $$ Both terms are positive, meaning $g''(\sqrt{12}) > 0$. Since $g''(\sqrt{12}) > 0$, the function is concave up at $x = \sqrt{12}$, confirming that this critical point is a minimum. 4. **Evaluate $g(x)$ at $x = \sqrt{12}$:** Now, substitute $x = \sqrt{12}$ into the original function $g(x)$ to find the corresponding value of $g(x)$: $$ g(\sqrt{12}) = \sqrt{12} + \frac{2}{\sqrt{12}} + \frac{40}{(\sqrt{12})^3} $$ Simplify the expression: $$ g(\sqrt{12}) = \sqrt{12} + \frac{2}{\sqrt{12}} + \frac{40}{12 \sqrt{12}} $$ \begin{align*} g(\sqrt{12}) &= \sqrt{12} + \frac{2}{\sqrt{12}} + \frac{40}{12 \sqrt{12}} \\ &= 2\sqrt{3} + \frac{2}{2\sqrt{3}} + \frac{40}{12 \cdot 2\sqrt{3}} \\ &= 2\sqrt{3} + \frac{1}{\sqrt{3}} + \frac{40}{24\sqrt{3}} \\ &= 2\sqrt{3} + \frac{1}{\sqrt{3}} + \frac{5}{3\sqrt{3}} \\ &= 2\sqrt{3} + \left( \frac{1}{\sqrt{3}} + \frac{5}{3\sqrt{3}} \right) \\ &= 2\sqrt{3} + \frac{1 \cdot 3 + 5}{3\sqrt{3}} \\ &= 2\sqrt{3} + \frac{8}{3\sqrt{3}} \\ &= 2\sqrt{3} + \frac{8}{3\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \\ &= 2\sqrt{3} + \frac{8\sqrt{3}}{9} \\ &= \sqrt{3} \left( 2 + \frac{8}{9} \right) \\ &= \sqrt{3} \cdot \left(\frac{18}{9} + \frac{8}{9}\right) \\ &= \sqrt{3} \cdot \frac{26}{9} \\ g(\sqrt{12}) &= \frac{26\sqrt{3}}{9} \end{align*} Therefore, the absolute minimum value of $g(x)$ occurs at $x = \sqrt{12}$. ### Conclusion: Since the second derivative at $x = \sqrt{12}$ is positive, this confirms that $x = \sqrt{12}$ is a minimum. The absolute minimum value of $g(x) = x + \frac{2}{x} + \frac{40}{x^3}$ on $(0, \infty)$ is achieved at $x = \sqrt{12}$, and the value is: $$ g(\sqrt{12}) = \frac{26\sqrt{3}}{9} $$ </details> # Question 4. Find the absolute minimum and maximum value of the function on the interval $[0,10]$. $$f(x)=x^2-6x+7$$ <details> <summary> Example: </summary> Find the absolute minimum and maximum value of the function on the interval $[0,9]$. $$f(x)=x^2-8x+9$$ ### Solution: To find the absolute minimum and maximum values on the interval $[0, 9]$, follow these steps: 1. **Find the critical points of the function:** First, take the derivative of $f(x)$: $$ f'(x) = 2x - 8 $$ Set the derivative equal to zero to find the critical points: $$ 2x - 8 = 0 $$ Solving for $x$: $$ x = \frac{8}{2} = 4 $$ 2. **Evaluate the function at the critical points and the endpoints:** We now evaluate $f(x)$ at the critical point $x = 4$, and at the endpoints of the interval, $x = 0$ and $x = 9$. - At $x = 0$: $$ f(0) = 0^2 - 8(0) + 9 = 9 $$ - At $x = 9$: $$ f(9) = 9^2 - 8(9) + 9 = 81 - 72 + 9 = 18 $$ - At $x = 4$: $$ f(4) = 4^2 - 8(4) + 9 = 16 - 32 + 9 = -7 $$ 3. **Determine the absolute minimum and maximum values:** From the calculations, the function values are: - $f(0) = 9$ - $f(9) = 18$ - $f(4) = -7$ Therefore, the **absolute minimum value** is $-7$ at $x = 4$, and the **absolute maximum value** is $18$ at $x = 9$. ### Conclusion: - The **absolute minimum value** of $f(x)$ on the interval $[0, 9]$ is $-7$ at $x = 4$. - The **absolute maximum value** of $f(x)$ on the interval $[0, 9]$ is $18$ at $x = 9$. </details>