# In-Class Activity 2.7 ## Question 1 Combine: ### a. $\dfrac{2^3 \cdot 2^4}{2^5}$ ::: spoiler <summary> Example: </summary> \begin{align} \dfrac{3^4 \cdot 3^6}{3^7}&= \dfrac{3^{4+6}}{3^7} \\ &= \dfrac{3^{10}}{3^7} \\ &= 3^{10-7}\\ &=3^3 \\ &=27 \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{2^3 \cdot 2^4}{2^5}&=\dfrac{2^{3+4}}{2^5} \\ &=\dfrac{2^7}{2^5} \\ &=2^{7-5} \\ &=2^2 \\ &=4 \end{align} ::: ### b. $\dfrac{(e^4 \cdot e^{-2})^2}{e^3}$ ::: spoiler <summary> Example: </summary> \begin{align} \dfrac{(\pi^3 \cdot \pi^{-4})^2 }{\pi^5}&= \dfrac{(\pi^{3-4} )^2 }{\pi^5} \\ &= \dfrac{(\pi^{-1} )^2 }{\pi^5} \\ &= \dfrac{\pi^{-1 \cdot 2} }{\pi^5} \\ &= \dfrac{\pi^{-2} }{\pi^5} \\ &= \pi^{-2-5} \\ &=\pi^{-7} \\ &=\dfrac{1}{\pi^7} \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \dfrac{(e^4 \cdot e^{-2})^2}{e^3}&=\dfrac{(e^{4-2})^2}{e^3} \\ &=\dfrac{(e^2)^2}{e^3} \\ &=\dfrac{e^4}{e^3} \\ &=e^{4-3} \\ &=e^1 \\ &=e \end{align} ::: ## Question 2 Expand as a sum of logarithms of primes. ### a. $\ln\left(\dfrac{28}{75}\right)$ ::: spoiler <summary> Example: </summary> Log Laws $\ln(AB)=\ln A+\ln B$ $\ln(A/B)=\ln A-\ln B$ $\ln(A^n)=n\ln A$ \begin{align} \ln\left(\dfrac{36}{60}\right) &=\ln 36-\ln 60 \\ &=\ln (6^2) - \ln(6 \cdot 10) \\ &=2\ln(6) - (\ln 6+\ln 10) \\ &=2\ln(6) - \ln 6-\ln 10 \\ &=\ln 6 - \ln 10 \\ &=\ln(2 \cdot 3) - \ln(2 \cdot 5) \\ &=\ln 2 + \ln 3 - (\ln 2 + \ln 5) \\ &=\ln 2 + \ln 3 - \ln 2-\ln 5 \\ &=\ln 3 - \ln 5 \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \ln\left(\dfrac{28}{75}\right)&=\ln (28)-\ln (75) \\ &=\ln(4 \cdot 7) - \ln (3 \cdot 25) \\ &=\ln 4+ \ln 7 - (\ln 3 + \ln 25) \\ &=\ln 4+ \ln 7 - \ln 3 - \ln 25 \\ &=\ln (2^2)+\ln 7-\ln 3 - \ln 25 \\ &=2\ln 2 +\ln 7 - \ln 3 - \ln (5^2) \\ &=2 \ln 2 +\ln 7 - \ln 3 - 2\ln 5 \end{align} ::: ### b. $\ln\left(\dfrac{105}{88}\right)$ ::: spoiler <summary> Example: </summary> Log Laws $\ln(AB)=\ln A+\ln B$ $\ln(A/B)=\ln A-\ln B$ $\ln(A^n)=n\ln A$ \begin{align} \ln\left(\dfrac{108}{72}\right) &=\ln 108-\ln 72 \\ &=\ln (108) - \ln(72) \\ &=\ln (9 \cdot 12) - \ln (8 \cdot 9) \\ &=\ln 9 +\ln 12-(\ln 8 +\ln 9) \\ &=\ln 9 +\ln 12 - \ln 8 - \ln 9 \\ &=\ln 12 - \ln 8 \\ &=\ln(4 \cdot 3) - \ln(2^3) \\ &=\ln 4+\ln 3 - 3\ln 2 \\ &=\ln(2^2)+\ln 3-3 \ln 2 \\ &=2\ln 2+\ln 3 - 3\ln 2 \\ &=\ln 3 - \ln 2 \end{align} ::: ::: spoiler <summary> Solution: </summary> \begin{align} \ln\left(\dfrac{105}{88}\right)&= \ln(105) - \ln (88) \\ &=\ln (5 \cdot 21) - \ln (11 \cdot 8) \\ &=\ln 5 +\ln 21 - (\ln 11 +\ln 8) \\ &=\ln 5+\ln 21 - \ln 11 - \ln 8 \\ &=\ln 5 +\ln(3 \cdot 7) - \ln 11 - \ln (2^3) \\ &=\ln 5 +\ln 3 + \ln 7-\ln 11 - 3\ln 2 \end{align} ::: ## Question 3 The total cost (in dollars) of producing $x$ food processors is $$C(x)=2000+50x-0.5x^2$$ ### a. Find the exact cost to produce the 21st food processor. ::: spoiler <summary> Example: </summary> Find the exact cost to produce the 25th food processor. The cost to produce 25 food processors is \begin{align} C(25)&=2000+50(25)-0.5(25)^2 \\ &=2937.50 \end{align} The cost to produce 24 food processors is \begin{align} C(24)&=2000+50(24)-0.5(24)^2 \\ &=2912.00 \end{align} Thus the cost to produce the 25th food processor is $C(25)-C(24)=2937.50-2912=25.50$ dollars. ::: ::: spoiler <summary> Solution: </summary> Find the exact cost to produce the 21st food processor. The cost to produce 21 food processors is \begin{align} C(21)&=2000+50(21)-0.5(21)^2 \\ &=2829.50 \end{align} The cost to produce 20 food processors is \begin{align} C(20)&=2000+50(20)-0.5(20)^2 \\ &=2800.00 \end{align} Thus the cost to produce the 21st food processor is $C(21)-C(20)=2829.50-2800.00=29.50$ dollars. ::: ### b. Use the marginal cost to approximate the cost of producing the 21st food processor. ::: spoiler <summary> Example: </summary> Use the marginal cost to approximate the cost of producing the 25th food processor. $$C(x)=2000+50x-0.5x^2$$ Taking the derivative: \begin{align} C'(x)&=(2000+50x-0.5x^2)' \\ &=(2000)' +50(x)'-0.5(x^2)' \\ &=0 +50(1)-0.5(2x) \\ &=50-x \end{align} Then plugging in $x=25$: $C'(25)=50-25=25$ dollars. ::: ::: spoiler <summary> Solution: </summary> Use the marginal cost to approximate the cost of producing the 21st food processor. $$C(x)=2000+50x-0.5x^2$$ Taking the derivative: \begin{align} C'(x)&=(2000+50x-0.5x^2)' \\ &=(2000)' +50(x)'-0.5(x^2)' \\ &=0 +50(1)-0.5(2x) \\ &=50-x \end{align} Then plugging in $x=21$: $C'(21)=50-21=29$ dollars. ::: ## Question 4 The price $p$ and demand $x$ for a brand of running shoes are related by the equation $$x=4000-40p$$. ### a. Express the price $p$ in terms of the demand $x$, and find the domain. ::: spoiler <summary> Example: </summary> Express the price $p$ in terms of the demand $x$ if $x=3000-50p$. \begin{align} x&=3000-50p \\ x-3000&=-50p \\ -50p&=x-3000 \\ \dfrac{-50p}{-50}&=\dfrac{x-3000}{-50} \\ p&=\dfrac{x}{-50} + \dfrac{-3000}{-50} \\ p&=-\dfrac{1}{50}x+60 \end{align} The domain is found by setting $p \geq 0$: \begin{align} p&\geq 0 \\ -\dfrac{1}{50}x+60 &\geq 0 \\ -\dfrac{1}{50}x &\geq -60 \\ (-50) \left(-\dfrac{1}{50}x\right) &\leq (-60)(-50) \\ x &\leq 3000 \end{align} Also since $x \geq 0$, we have the domain as $0 \leq x \leq 3000$. ::: ::: spoiler <summary> Solution: </summary> Express the price $p$ in terms of the demand $x$ if $x=4000-40p$. \begin{align} x&=4000-40p \\ x-4000&=-40p \\ -40p&=x-4000 \\ \dfrac{-40p}{-40}&=\dfrac{x-4000}{-40} \\ p&=\dfrac{x}{-40} + \dfrac{-4000}{-40} \\ p&=-\dfrac{1}{40}x+100 \end{align} The domain is found by setting $p \geq 0$: \begin{align} p&\geq 0 \\ -\dfrac{1}{40}x+100 &\geq 0 \\ -\dfrac{1}{40}x &\geq -100 \\ (-40) \left(-\dfrac{1}{40}x\right) &\leq (-100)(-40) \\ x &\leq 4000 \end{align} Also since $x \geq 0$, we have the domain as $0 \leq x \leq 4000$. ::: ### b. Find the revenue $R(x)$ for the sale of $x$ pairs of running shoes. What is the domain of $R(x)$? ::: spoiler <summary> Example: </summary> Since $p=-\dfrac{1}{50}x+60$, the revenue is \begin{align} R(x)&=xp \\ &=x\left(-\dfrac{1}{50}x+60\right) \\ R(x)&=-\dfrac{1}{50}x^2+60x \end{align} Domain is the same as before, $0 \leq x \leq 3000$. ::: ::: spoiler <summary> Solution: </summary> Since $p=-\dfrac{1}{40}x+100$, the revenue is \begin{align} R(x)&=xp \\ &=x\left(-\dfrac{1}{40}x+100\right) \\ R(x)&=-\dfrac{1}{40}x^2+100x \end{align} Domain is the same as before, $0 \leq x \leq 4000$. ::: ### c. Find the marginal revenue at a production level of 1600 pairs and interpret the result. ::: spoiler <summary> Example: </summary> Say 500 pairs instead Take the derivative: \begin{align} R(x)&=-\dfrac{1}{50}x^2+60x \\ R'(x)&=-\dfrac{1}{50} (x^2)' +60(x)' \\ R'(x)&=-\dfrac{1}{50} (2x^{2-1}) +60(1) \\ R'(x)&=-\dfrac{1}{50} (2x) +60 \\ R'(x)&=-\dfrac{2}{50} x +60 \\ R'(x)&=-\dfrac{1}{25} x +60 \\ \end{align} Then plug in $x=500$: \begin{align} R'(500)&=-\dfrac{1}{25} (500) +60 \\ &=40 \end{align} At a production level of 500 pairs of shoes, the revenue increases at a rate of $40 per shoe. ::: ::: spoiler <summary> Solution: </summary> Take the derivative: \begin{align} R(x)&=-\dfrac{1}{40}x^2+100x \\ R'(x)&=-\dfrac{1}{40} (x^2)' +100(x)' \\ R'(x)&=-\dfrac{1}{40} (2x^{2-1}) +100(1) \\ R'(x)&=-\dfrac{1}{40} (2x) +100 \\ R'(x)&=-\dfrac{2}{40} x +100 \\ R'(x)&=-\dfrac{1}{20} x +100 \\ \end{align} Then plug in $x=1600$: \begin{align} R'(1600)&=-\dfrac{1}{20} (1600) +100 \\ &=-80+100 \\ &=20 \end{align} At a production level of 1600 pairs of shoes, the revenue increases at a rate of $20 per shoe. ::: ### d. Find the marginal revenue at a production level of 2500 pairs and interpret the result. ::: spoiler <summary> Example: </summary> Say 2000 pairs instead Then plug in $x=2000$: \begin{align} R'(x)&=-\dfrac{1}{25} x +60 \\ R'(2000)&=-\dfrac{1}{25} (2000) +60 \\ &=-20 \end{align} At a production level of 2000 pairs of shoes, the revenue decreases at a rate of $20 per shoe. ::: ::: spoiler <summary> Solution: </summary> Using the marginal revenue from the previous part: \begin{align} R'(x)&=-\dfrac{1}{20} x +100 \\ \end{align} Then plug in $x=2500$: \begin{align} R'(1600)&=-\dfrac{1}{20} (2500) +100 \\ &=-125+100 \\ &=-25 \end{align} At a production level of 2500 pairs of shoes, the revenue decreases at a rate of $25 per shoe. :::