# Question 1: Find the positive solution of the following equations. ## a. $$50 = \frac{x^2}{600} + \frac{1}{5}x + 32$$ <details> <summary> Example: </summary> Find the positive solution of the following equation $$30 = \frac{x^2}{2000} + \frac{11}{200}x + 26$$ Find the positive solution of the following equation $$ 30 = \dfrac{x^2}{2000} + \dfrac{11}{200}x + 26 $$ ### Step-by-step Solution 1. **Subtract 30 from both sides:** $$ 0 = \dfrac{x^2}{2000} + \dfrac{11}{200}x + 26 - 30 $$ Simplifying this gives: $$ 0 = \dfrac{x^2}{2000} + \dfrac{11}{200}x - 4 $$ 2. **Multiply the whole equation by 2000 to eliminate the denominator:** $$ 2000 \cdot 0 = 2000 \left( \dfrac{x^2}{2000} + \dfrac{11}{200}x - 4 \right) $$ Simplifying the terms gives: $$ 0 = x^2 + 110x - 8000 $$ 3. **Now solve the quadratic equation:** The quadratic equation is: $$ x^2 + 110x - 8000 = 0 $$ 4. **Use the quadratic formula:** The quadratic formula is given by: $$ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ For this equation, $a = 1$ , $b = 110$, and $c = -8000$. 5. **Substitute the values into the quadratic formula:** $$ x = \dfrac{-110 \pm \sqrt{110^2 - 4(1)(-8000)}}{2(1)} $$ Simplifying inside the square root: $$ x = \dfrac{-110 \pm \sqrt{12100 + 32000}}{2} $$ $$ x = \dfrac{-110 \pm \sqrt{44100}}{2} $$ 6. **Calculate the square root:** $$ \sqrt{44100} = 210 $$ 7. **Substitute back:** $$ x = \dfrac{-110 \pm 210}{2} $$ 8. **Find the two possible values for \(x\):** - For the positive root: $$ x = \dfrac{-110 + 210}{2} = \dfrac{100}{2} = 50 $$ - For the negative root: $$ x = \dfrac{-110 - 210}{2} = \dfrac{-320}{2} = -160 $$ 9. **Since we are only interested in the positive solution, the final answer is:** $$ x = 50 $$ Thus, the positive solution is: $$ x = 50 $$ </details> ## b. $$30 = \frac{x^2}{64} + \frac{1}{4}x + 6$$ <details> <summary> Example: </summary> $$\dfrac{x^2}{375}+\dfrac{2x}{75}+39=40$$ Find the positive solution of the following equation $$ \dfrac{x^2}{375} + \dfrac{2x}{75} + 39 = 40 $$ ### Step-by-step Solution 1. **Subtract 40 from both sides:** $$ 0 = \dfrac{x^2}{375} + \dfrac{2x}{75} + 39 - 40 $$ Simplifying this gives: $$ 0 = \dfrac{x^2}{375} + \dfrac{2x}{75} - 1 $$ 2. **Multiply the whole equation by 375 to eliminate the denominators:** $$ 375 \cdot 0 = 375 \left( \dfrac{x^2}{375} + \dfrac{2x}{75} - 1 \right) $$ This simplifies to: $$ 0 = x^2 + 10x - 375 $$ 3. **Now solve the quadratic equation:** The quadratic equation is: $$ x^2 + 10x - 375 = 0 $$ 4. **Use the quadratic formula:** The quadratic formula is given by: $$ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ For this equation, $a = 1$, $b = 10$, and $c = -375$. 5. **Substitute the values into the quadratic formula:** $$ x = \dfrac{-10 \pm \sqrt{10^2 - 4(1)(-375)}}{2(1)} $$ Simplifying inside the square root: $$ x = \dfrac{-10 \pm \sqrt{100 + 1500}}{2} $$ $$ x = \dfrac{-10 \pm \sqrt{1600}}{2} $$ 6. **Calculate the square root:** $$ \sqrt{1600} = 40 $$ 7. **Substitute back:** $$ x = \dfrac{-10 \pm 40}{2} $$ 8. **Find the two possible values for $x$:** - For the positive root: $$ x = \dfrac{-10 + 40}{2} = \dfrac{30}{2} = 15 $$ - For the negative root: $$ x = \dfrac{-10 - 40}{2} = \dfrac{-50}{2} = -25 $$ 9. **Since we are only interested in the positive solution, the final answer is:** $$ x = 15 $$ Thus, the positive solution is: $$ x = 15 $$ </details> # Question 2: Find the following derivatives ## a. For the function $$f(x) = \ln(3x^9)$$ find: $$f'(x) = $$ <details> <summary> Example: </summary> To solve for the derivative of the function: $$ f(x) = \ln(4x^8) $$ we will apply the rules of logarithmic differentiation and the chain rule. ### Step-by-step Solution 1. **Rewrite the logarithmic expression using logarithmic properties:** Using the property of logarithms that $\ln(ab) = \ln(a) + \ln(b)$, we can rewrite the function as: $$ f(x) = \ln(4) + \ln(x^8) $$ 2. **Simplify the logarithmic expression:** Using the property $\ln(x^n) = n \ln(x)$, we simplify $\ln(x^8)$ as: $$ f(x) = \ln(4) + 8\ln(x) $$ 3. **Differentiate both terms:** - The derivative of $\ln(4)$ is $0$, since $\ln(4)$ is a constant. - The derivative of $8\ln(x)$ is $\dfrac{8}{x}$, using the basic derivative rule for $\ln(x)$. 4. **Final derivative:** Therefore, the derivative of $f(x)$ is: $$ f'(x) = \dfrac{8}{x} $$ Thus, the derivative of $f(x)$ is: $$ f'(x) = \dfrac{8}{x} $$ </details> ## b. For the function $$g(x) = \frac{x + 8}{x - 5}$$ find: $$g'(x) = $$ <details> <summary> Example: </summary> To find the derivative of the function: $$ g(x) = \dfrac{x + 9}{x - 4} $$ we will use the quotient rule. The quotient rule is given by: $$ \left( \dfrac{f(x)}{h(x)} \right)' = \dfrac{f'(x)h(x) - f(x)h'(x)}{[h(x)]^2} $$ For our function, we identify: - Top function: $f(x) = x + 9$ - Bottom function: $h(x) = x - 4$ ### Step-by-step Differentiation | Original / Derivative | Top Function $f(x)$ | Bottom Function $h(x)$ | |------------------------|----------------------|------------------------| | Original | $x + 9$ | $x - 4$ | | Derivative | $f'(x) = 1$ | $h'(x) = 1$ | Now, applying the quotient rule: $$ g'(x) = \dfrac{(1)(x - 4) - (x + 9)(1)}{(x - 4)^2} $$ Simplifying the numerator: $$ g'(x) = \dfrac{x - 4 - x - 9}{(x - 4)^2} $$ This simplifies further: $$ g'(x) = \dfrac{-13}{(x - 4)^2} $$ ### Final Answer Thus, the derivative of the function is: $$ g'(x) = \dfrac{-13}{(x - 4)^2} $$ </details> ## c. For the function $$h(x) = -2x^5 + 4x^4 - 2x^2 + 1$$ find: $$h'(x) = $$ <details> <summary> Example: </summary> To find the derivative of the function: $$ h(x) = -3x^6 + 7x^5 - 2x^3 + 8 $$ we will apply the basic rules of differentiation, specifically the power rule, which states that for any term $ax^n$, the derivative is $a \cdot n \cdot x^{n-1}$. ### Step-by-step Differentiation 1. **Differentiate each term individually:** - The derivative of $-3x^6$ is: $$ \dfrac{d}{dx}[-3x^6] = -3 \cdot 6x^{6-1} = -18x^5 $$ - The derivative of $7x^5$ is: $$ \dfrac{d}{dx}[7x^5] = 7 \cdot 5x^{5-1} = 35x^4 $$ - The derivative of $-2x^3$ is: $$ \dfrac{d}{dx}[-2x^3] = -2 \cdot 3x^{3-1} = -6x^2 $$ - The derivative of the constant $8$ is $0$ since the derivative of a constant is always zero. 2. **Combine all the derivatives:** The derivative of the entire function $h(x)$ is: $$ h'(x) = -18x^5 + 35x^4 - 6x^2 $$ ### Final Answer Thus, the derivative of the function is: $$ h'(x) = -18x^5 + 35x^4 - 6x^2 $$ </details> # Question 3: Find the consumers' and producers' surplus at the equilibrium price level for the given price-demand and price-supply equations. $$p = D(x) = 50 - \frac{x}{10}, \quad p = S(x) = 11 + \frac{x}{20}$$ <details> <summary> Example: </summary> Find the consumers' and producers' surplus at the equilibrium price level for the given price-demand and price-supply equations. $$p = D(x) = -0.5x+500, \quad p = S(x) = 0.25x+260$$ ### Given: - Demand equation: $$ p = D(x) = -0.5x + 500 $$ - Supply equation: $$ p = S(x) = 0.25x + 260 $$ We need to find the consumers' and producers' surplus at the equilibrium price level using the formula for consumers' and producers' surplus. The formula for consumers' surplus is: $$ \text{Consumers' Surplus} = \int_0^{\bar{x}} \left(D(x) - \bar{p}\right) \, dx $$ The formula for producers' surplus is: $$ \text{Producers' Surplus} = \int_0^{\bar{x}} \left(\bar{p} - S(x)\right) \, dx $$ Where: - $\bar{x}$ is the equilibrium quantity. - $\bar{p}$ is the equilibrium price. ### Step 1: Find the equilibrium quantity and price At equilibrium, the demand equals the supply: $$ D(x) = S(x) $$ Substitute the equations for $D(x)$ and $S(x)$: $$ -0.5x + 500 = 0.25x + 260 $$ Solve for $x$: \begin{align} 500 - 260 &= 0.25x + 0.5x \\ 240 &= 0.75x \\ x &= \dfrac{240}{0.75} \\ x &= 320 \end{align} Thus, the equilibrium quantity is $\bar{x} = 320$. Now, substitute $x = 320$ into either the demand or supply equation to find the equilibrium price: $$ p = D(320) = -0.5(320) + 500 $$ \begin{align} p &= -160 + 500 \\ p &= 340 \end{align} Thus, the equilibrium price is $\bar{p} = 340$. ### Step 2: Consumers' Surplus The formula for consumers' surplus is: $$ \text{Consumers' Surplus} = \int_0^{320} \left(D(x) - 340\right) \, dx $$ Substitute the demand function $D(x) = -0.5x + 500$: $$ \text{Consumers' Surplus} = \int_0^{320} \left(-0.5x + 500 - 340\right) \, dx $$ Simplify the integrand: $$ \text{Consumers' Surplus} = \int_0^{320} \left(-0.5x + 160\right) \, dx $$ Now calculate the integral: $$ \int (-0.5x + 160) \, dx = -0.25x^2 + 160x $$ Evaluate the integral from $0$ to $320$: \begin{align} \left[-0.25(320)^2 + 160(320)\right] - [0] &= -0.25(102400) + 160(320) \\ &= -25600 + 51200 \\ &= 25600 \end{align} Thus, the consumers' surplus is: $$ \text{Consumers' Surplus} = 25600 $$ ### Step 3: Producers' Surplus The formula for producers' surplus is: $$ \text{Producers' Surplus} = \int_0^{320} \left(340 - S(x)\right) \, dx $$ Substitute the supply function $S(x) = 0.25x + 260$: $$ \text{Producers' Surplus} = \int_0^{320} \left(340 - (0.25x + 260)\right) \, dx $$ Simplify the integrand: $$ \text{Producers' Surplus} = \int_0^{320} \left(340 - 0.25x - 260\right) \, dx $$ $$ \text{Producers' Surplus} = \int_0^{320} \left(80 - 0.25x\right) \, dx $$ Now calculate the integral: $$ \int (80 - 0.25x) \, dx = 80x - 0.125x^2 $$ Evaluate the integral from $0$ to $320$: \begin{align} \left[80(320) - 0.125(320)^2\right] - [0] &= 80(320) - 0.125(102400) \\ &= 25600 - 12800 \\ &= 12800 \end{align} Thus, the producers' surplus is: $$ \text{Producers' Surplus} = 12800 $$ ### Final Answer: - **Consumers' Surplus:** $25600$ - **Producers' Surplus:** $12800$ </details> --- # Question 4: Find the producers' surplus at a price level of $$\bar{p} = 67$$ for the price supply equation $$p = S(x) = 10 + \frac{x}{10} + \frac{3}{10000}x^2$$ <details> <summary> Example: </summary> Let the price supply equation be $S(x)=15 + \frac{x}{10} + \frac{3}{10000}x^2$ with an equilibrium price of $103. ### Given: - Supply equation: $$ S(x) = 15 + \frac{x}{10} + \frac{3}{10000}x^2 $$ - Equilibrium price: $$ \bar{p} = 103 $$ We need to find the producers' surplus at the equilibrium price. The formula for producers' surplus is: $$ \text{Producers' Surplus} = \int_0^{\bar{x}} \left(\bar{p} - S(x)\right) \, dx $$ Where $\bar{x}$ is the equilibrium quantity. To find $\bar{x}$, we solve for $x$ when $S(x) = 103$. ### Step 1: Solve for equilibrium quantity Set the supply function equal to 103: $$ 15 + \frac{x}{10} + \frac{3}{10000}x^2 = 103 $$ Subtract 15 from both sides: $$ \frac{x}{10} + \frac{3}{10000}x^2 = 88 $$ Multiply through by 10000 to eliminate fractions: $$ 1000x + 3x^2 = 880000 $$ Rearrange into standard quadratic form: $$ 3x^2 + 1000x - 880000 = 0 $$ Solve this quadratic equation using the quadratic formula: $$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ Substitute $a = 3$, $b = 1000$, and $c = -880000$: $$ x = \frac{-1000 \pm \sqrt{1000^2 - 4(3)(-880000)}}{2(3)} $$ Simplify: $$ x = \frac{-1000 \pm \sqrt{1000000 + 10560000}}{6} $$ $$ x = \frac{-1000 \pm \sqrt{11560000}}{6} $$ $$ x = \frac{-1000 \pm 3400}{6} $$ Thus, the two possible values for $x$ are: $$ x = \frac{-1000 + 3400}{6} = 400 $$ or $$ x = \frac{-1000 - 3400}{6} = -733.33 $$ Since quantity $x$ cannot be negative, we take $x = 400$. Thus, the equilibrium quantity is $\bar{x} = 400$. ### Step 2: Find Producers' Surplus The formula for producers' surplus is: $$ \text{Producers' Surplus} = \int_0^{400} \left(103 - \left(15 + \frac{x}{10} + \frac{3}{10000}x^2\right)\right) \, dx $$ Simplify the integrand: $$ \text{Producers' Surplus} = \int_0^{400} \left(88 - \frac{x}{10} - \frac{3}{10000}x^2\right) \, dx $$ To solve the integral for the producer's surplus: $$ \int_0^{400} \left(88 - \frac{x}{10} - \frac{3}{10000}x^2\right) \, dx $$ We calculate the integral using the following steps: \begin{align*} \int_0^{400} \left(88 - \frac{x}{10} - \frac{3}{10000}x^2\right) \, dx &= \left[ 88x - \frac{x^2}{20} - \frac{x^3}{10000} \right]_0^{400} \\ &= \left[ 88(400) - \frac{400^2}{20} - \frac{400^3}{10000} \right] \\ &= \left[ 35200 - \frac{160000}{20} - \frac{64000000}{10000} \right] \\ &= \left[ 35200 - 8000 - 6400 \right] \\ &= 20800 \end{align*} Thus, the producer's surplus is: $$ 20800 $$ </details>