[toc] # 2.2 - Combinations of Functions ## JIT 12. Multiplying Polynomials ## Multiplying Monomials - Multiply coefficients, add powers of $x$: $x^a \cdot x^b=x^{a+b}$ ### Example 1. $(4x)(6x)=24x^2$ ### Example 2. $(4x)(-7)=-28x$ ### Example 3. $(2x^5)(-3x^3)=-6x^8$ ### Example 4 $(-5)(3x)=-15x$ ### Example 5. $(-5x)(-4x)=20x^2$ ### Example 6. $(-2x^2)(4x^3)=-8x^5$ ## Multiplying binomials: also known as **FOIL**. - $$(a+b)(c+d)=ac+ad+bc+bd$$ - **FOIL**: **F**irst + **O**uter + **I**nner + **L**ast ### Example 7. \begin{align} (x+5)(x+2)&=x \cdot x +x \cdot 2+ 5 \cdot x +5 \cdot 2 \\ &=x^2+2x+5x+10 \\ &=x^2+7x+10 \end{align} ### Example 8. \begin{align} (2x-3)(x+4)&=2x \cdot x +2x \cdot 4-3 \cdot x -3\cdot 4 \\ &=2x^2+8x-3x-12 \\ &=2x^2+5x-12 \end{align} ### Example 9. \begin{align} (x-4)(3x+1)&=x \cdot 3x +x \cdot 1-4 \cdot 3x -4\cdot 1 \\ &=3x^2+x-12x-4 \\ &=3x^2-11x-4 \end{align} ### Example 10. \begin{align} (y-2)(2y+3)&=y \cdot 2y+y \cdot 3-2 \cdot 2y -2 \cdot 3 \\ &=2y^2+3y-4y-6 \\ &=2y^2-y-6 \end{align} ## Squares of binomials $$(x-5)^2=(x-5)(x-5)=x^2-5x-5x+25=x^2-10x+25$$ $$(2x+1)^2=(2x+1)(2x+1)=4x^2+2x+2x+1=4x^2+4x+1$$ $$(3y-4)^2=(3y-4)(3y-4)=9y^2-12y-12y+16=9y^2-24y+16$$ ## Other examples of distribution. $$2x^3(5x^2-7)=10x^5-14x^3$$ $$-5x^2(-3x-2)=15x^3+10x^2$$ ## Difference of Two Squares $$(A+B)(A-B)=A^2-B^2$$ ### Example. $$(x+3)(x-3)=x^2-9$$ ### Example. $$(4+x)(4-x)=16-x^2$$ # JIT 19. Fractions $$\dfrac{x^a}{x^b}=x^{a-b}$$ - Key fact: $\dfrac{a}{b}=\dfrac{a \cdot c}{b \cdot c}$ - Key fact: $\dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c}$ We often need to do the opposite: - Key fact: $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$ ### Example. Split into three fractions: \begin{align} \dfrac{4x^3-2x+1}{2x^2}&=\dfrac{4x^3}{2x^2}-\dfrac{2x}{2x^2}+\dfrac{1}{2x^2} \\ &=2x-x^{-1}+\dfrac{1}{2}x^{-2} \end{align} ### Example. Split into three fractions: \begin{align} \dfrac{3x^5-2x+1}{x^3}&=\dfrac{3x^5}{x^3}-\dfrac{2x}{x^3}+\dfrac{1}{x^3} \\ &=3x^2-2x^{-2}+x^{-3} \end{align} ### Example. Split into three fractions: \begin{align} \dfrac{3x^5-4x+1}{2x}&=\dfrac{3x^5}{2x}-\dfrac{4x}{2x}+\dfrac{1}{2x} \\ &=\dfrac{3}{2}x^4-2+\dfrac{1}{2}x^{-1} \end{align} # 2.2 Combinations of Functions - We learn to add, subtract, multiply, and divide functions, just like with numbers. $$(f+g)(x)=f(x)+g(x)$$ $$(f-g)(x)=f(x)-g(x)$$ $$(fg)(x)=f(x) g(x)$$ $$\left(\dfrac{f}{g}\right)(x)=\dfrac{f(x)}{g(x)}$$ ## Example. Let $f(x)=2x-6$ and $g(x)=3x^2+5$ --- ### 1. Find $(f+g)(3)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $x = 3$ into $f(x)$ and $g(x)$ $f(3) = 2(3) - 6 = 6 - 6 = 0$ $g(3) = 3(3)^2 + 5 = 3(9) + 5 = 27 + 5 = 32$ #### Step 3: Add the results $(f+g)(3) = f(3) + g(3) = 0 + 32 = 32$ #### Solution: $(f+g)(3) = 32$ ::: --- ### 2. Find $(f-g)(-1)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $x = -1$ into $f(x)$ and $g(x)$ $f(-1) = 2(-1) - 6 = -2 - 6 = -8$ $g(-1) = 3(-1)^2 + 5 = 3(1) + 5 = 3 + 5 = 8$ #### Step 3: Subtract the results $(f-g)(-1) = f(-1) - g(-1) = -8 - 8 = -16$ #### Solution: $(f-g)(-1) = -16$ ::: --- ### 3. Find $(g-f)(2)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(g-f)(x)$ $(g-f)(x) = g(x) - f(x)$ #### Step 2: Substitute $x = 2$ into $f(x)$ and $g(x)$ $f(2) = 2(2) - 6 = 4 - 6 = -2$ $g(2) = 3(2)^2 + 5 = 3(4) + 5 = 12 + 5 = 17$ #### Step 3: Subtract the results $(g-f)(2) = g(2) - f(2) = 17 - (-2) = 17 + 2 = 19$ #### Solution: $(g-f)(2) = 19$ ::: --- ### 4. Find $(fg)(2)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $x = 2$ into $f(x)$ and $g(x)$ $f(2) = 2(2) - 6 = 4 - 6 = -2$ $g(2) = 3(2)^2 + 5 = 3(4) + 5 = 12 + 5 = 17$ #### Step 3: Multiply the results $(fg)(2) = f(2) \cdot g(2) = -2 \cdot 17 = -34$ #### Solution: $(fg)(2) = -34$ ::: --- ### 5. Find $(f/g)(4)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \frac{f(x)}{g(x)}$ #### Step 2: Substitute $x = 4$ into $f(x)$ and $g(x)$ $f(4) = 2(4) - 6 = 8 - 6 = 2$ $g(4) = 3(4)^2 + 5 = 3(16) + 5 = 48 + 5 = 53$ #### Step 3: Divide the results $(f/g)(4) = \frac{f(4)}{g(4)} = \frac{2}{53}$ #### Solution: $(f/g)(4) = \frac{2}{53}$ ::: --- ### 6. Find $(f+g)(4)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $x = 4$ into $f(x)$ and $g(x)$ $f(4) = 2(4) - 6 = 8 - 6 = 2$ $g(4) = 3(4)^2 + 5 = 3(16) + 5 = 48 + 5 = 53$ #### Step 3: Add the results $(f+g)(4) = f(4) + g(4) = 2 + 53 = 55$ #### Solution: $(f+g)(4) = 55$ ::: --- ### 7. Find $(f-g)(-2)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $x = -2$ into $f(x)$ and $g(x)$ $f(-2) = 2(-2) - 6 = -4 - 6 = -10$ $g(-2) = 3(-2)^2 + 5 = 3(4) + 5 = 12 + 5 = 17$ #### Step 3: Subtract the results $(f-g)(-2) = f(-2) - g(-2) = -10 - 17 = -27$ #### Solution: $(f-g)(-2) = -27$ ::: --- ### 8. Find $(g-f)(3)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(g-f)(x)$ $(g-f)(x) = g(x) - f(x)$ #### Step 2: Substitute $x = 3$ into $f(x)$ and $g(x)$ $f(3) = 2(3) - 6 = 6 - 6 = 0$ $g(3) = 3(3)^2 + 5 = 3(9) + 5 = 27 + 5 = 32$ #### Step 3: Subtract the results $(g-f)(3) = g(3) - f(3) = 32 - 0 = 32$ #### Solution: $(g-f)(3) = 32$ ::: --- ### 9. Find $(fg)(3)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $x = 3$ into $f(x)$ and $g(x)$ $f(3) = 2(3) - 6 = 6 - 6 = 0$ $g(3) = 3(3)^2 + 5 = 3(9) + 5 = 27 + 5 = 32$ #### Step 3: Multiply the results $(fg)(3) = f(3) \cdot g(3) = 0 \cdot 32 = 0$ #### Solution: $(fg)(3) = 0$ ::: --- ### 10. Find $(f/g)(2)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \frac{f(x)}{g(x)}$ #### Step 2: Substitute $x = 2$ into $f(x)$ and $g(x)$ $f(2) = 2(2) - 6 = 4 - 6 = -2$ $g(2) = 3(2)^2 + 5 = 3(4) + 5 = 12 + 5 = 17$ #### Step 3: Divide the results $(f/g)(2) = \frac{f(2)}{g(2)} = \frac{-2}{17}$ #### Solution: $(f/g)(2) = \frac{-2}{17}$ ::: --- ### 11. Find $(f+g)(\frac{1}{2})$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $x = \frac{1}{2}$ into $f(x)$ and $g(x)$ $f(\frac{1}{2}) = 2(\frac{1}{2}) - 6 = 1 - 6 = -5$ $g(\frac{1}{2}) = 3(\frac{1}{2})^2 + 5 = 3(\frac{1}{4}) + 5 = \frac{3}{4} + 5 = \frac{3}{4} + \frac{20}{4} = \frac{23}{4}$ #### Step 3: Add the results $(f+g)(\frac{1}{2}) = f(\frac{1}{2}) + g(\frac{1}{2}) = -5 + \frac{23}{4} = \frac{-20}{4} + \frac{23}{4} = \frac{3}{4}$ #### Solution: $(f+g)(\frac{1}{2}) = \frac{3}{4}$ ::: --- ### 12. Find $(g-f)(-\frac{1}{2})$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(g-f)(x)$ $(g-f)(x) = g(x) - f(x)$ #### Step 2: Substitute $x = -\frac{1}{2}$ into $f(x)$ and $g(x)$ $f(-\frac{1}{2}) = 2(-\frac{1}{2}) - 6 = -1 - 6 = -7$ $g(-\frac{1}{2}) = 3(-\frac{1}{2})^2 + 5 = 3(\frac{1}{4}) + 5 = \frac{3}{4} + 5 = \frac{3}{4} + \frac{20}{4} = \frac{23}{4}$ #### Step 3: Subtract the results $(g-f)(-\frac{1}{2}) = g(-\frac{1}{2}) - f(-\frac{1}{2}) = \frac{23}{4} - (-7) = \frac{23}{4} + \frac{28}{4} = \frac{51}{4}$ #### Solution: $(g-f)(-\frac{1}{2}) = \frac{51}{4}$ ::: --- ### 13. Find $(fg)(\frac{1}{3})$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $x = \frac{1}{3}$ into $f(x)$ and $g(x)$ $f(\frac{1}{3}) = 2(\frac{1}{3}) - 6 = \frac{2}{3} - 6 = \frac{2}{3} - \frac{18}{3} = \frac{-16}{3}$ $g(\frac{1}{3}) = 3(\frac{1}{3})^2 + 5 = 3(\frac{1}{9}) + 5 = \frac{3}{9} + 5 = \frac{1}{3} + 5 = \frac{1}{3} + \frac{15}{3} = \frac{16}{3}$ #### Step 3: Multiply the results $(fg)(\frac{1}{3}) = f(\frac{1}{3}) \cdot g(\frac{1}{3}) = \frac{-16}{3} \cdot \frac{16}{3} = \frac{-256}{9}$ #### Solution: $(fg)(\frac{1}{3}) = \frac{-256}{9}$ ::: --- ### 14. Find $(f/g)(\frac{1}{2})$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \frac{f(x)}{g(x)}$ #### Step 2: Substitute $x = \frac{1}{2}$ into $f(x)$ and $g(x)$ $f(\frac{1}{2}) = 2(\frac{1}{2}) - 6 = 1 - 6 = -5$ $g(\frac{1}{2}) = 3(\frac{1}{2})^2 + 5 = 3(\frac{1}{4}) + 5 = \frac{3}{4} + 5 = \frac{3}{4}+\frac{20}{4}=\frac{23}{4}$ #### Step 3: Divide the results $(f/g)(\frac{1}{2}) = \frac{f(\frac{1}{2})}{g(\frac{1}{2})} = \frac{-5}{\frac{23}{4}} = \frac{-5 \cdot 4}{23} = \frac{-20}{23}$ #### Solution: $(f/g)(\frac{1}{2}) = \frac{-20}{23}$ ::: --- ## Let $f(x)=2x+5$, $g(x)=x+4$ ### 15. Find $(f+g)(x)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $f(x) = 2x + 5$ and $g(x) = x + 4$ $(f+g)(x) = (2x + 5) + (x + 4)$ #### Step 3: Simplify the expression $(f+g)(x) = 2x + x + 5 + 4 = 3x + 9$ #### Solution: $(f+g)(x) = 3x + 9$ ::: --- ### 16. Find $(f-g)(x)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $f(x) = 2x + 5$ and $g(x) = x + 4$ $(f-g)(x) = (2x + 5) - (x + 4)$ $(f-g)(x) = 2x + 5 -x-4 \qquad$ Distribute the negative. #### Step 3: Simplify the expression $(f-g)(x) = 2x - x + 5 - 4 = x + 1$ #### Solution: $(f-g)(x) = x + 1$ ::: --- ### 17. Find $(g-f)(x)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(g-f)(x)$ $(g-f)(x) = g(x) - f(x)$ #### Step 2: Substitute $f(x) = 2x + 5$ and $g(x) = x + 4$ $(g-f)(x) = (x + 4) - (2x + 5)$ $(g-f)(x) = x + 4 - 2x - 5 \qquad$ Distribute the negative. #### Step 3: Simplify the expression $(g-f)(x) = x - 2x + 4 - 5 = -x - 1$ #### Solution: $(g-f)(x) = -x - 1$ ::: --- ### 18. Find $(fg)(x)$. ::: spoiler <summary> Solution: </summary> We are given two functions: $f(x) = 2x + 5$ $g(x) = x + 4$ ### Calculating $(fg)(x)$ Using the FOIL Method 1. We are asked to find $(fg)(x)$. 2. This means we need to multiply $f(x)$ and $g(x)$ together using the FOIL method (First, Outer, Inner, Last). - Write the product: $(fg)(x) = (2x + 5)(x + 4)$ Now, apply FOIL: - **First** terms: $2x \cdot x = 2x^2$ - **Outer** terms: $2x \cdot 4 = 8x$ - **Inner** terms: $5 \cdot x = 5x$ - **Last** terms: $5 \cdot 4 = 20$ Now, combine all the terms: $2x^2 + 8x + 5x + 20$ Combine like terms: $= 2x^2 + 13x + 20$ So, $(fg)(x) = 2x^2 + 13x + 20$. ::: --- ### 19. Find $(f/g)(x)$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \dfrac{f(x)}{g(x)}$ #### Step 2: Substitute $f(x) = 2x + 5$ and $g(x) = x + 4$ $(f/g)(x) = \dfrac{2x + 5}{x + 4}$ #### Solution: $(f/g)(x) = \dfrac{2x + 5}{x + 4}$ ::: --- ### 20. Find $(f+g)(x)$ for $f(x) = 2x - 3$ and $g(x) = x + 5$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $f(x) = 2x - 3$ and $g(x) = x + 5$ $(f+g)(x) = (2x - 3) + (x + 5)=2x-3+x+5$ #### Step 3: Simplify the expression $(f+g)(x) = 2x + x - 3 + 5 = 3x + 2$ #### Solution: $(f+g)(x) = 3x + 2$ ::: --- ### 21. Find $(f-g)(x)$ for $f(x) = 2x - 3$ and $g(x) = x + 5$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $f(x) = 2x - 3$ and $g(x) = x + 5$ $(f-g)(x) = (2x - 3) - (x + 5)$ $(f-g)(x) = 2x - 3 - x - 5\qquad$ Distribute the negative. #### Step 3: Simplify the expression $(f-g)(x) = 2x - x - 3 - 5 = x - 8$ #### Solution: $(f-g)(x) = x - 8$ ::: --- ### 22. Find $(g-f)(x)$ for $f(x) = 2x - 3$ and $g(x) = x + 5$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(g-f)(x)$ $(g-f)(x) = g(x) - f(x)$ #### Step 2: Substitute $f(x) = 2x - 3$ and $g(x) = x + 5$ $(g-f)(x) = (x + 5) - (2x - 3)$ $(g-f)(x) = x + 5 - 2x +3\qquad$ Distribute the negative. #### Step 3: Simplify the expression $(g-f)(x) = x - 2x + 5 + 3 = -x + 8$ #### Solution: $(g-f)(x) = -x + 8$ ::: --- ### 23. Find $(fg)(x)$ for $f(x) = 2x - 3$ and $g(x) = x + 5$. ::: spoiler <summary> Solution: </summary> We are given two functions: $f(x) = 2x - 3$ $g(x) = x + 5$ ### Calculating $(fg)(x)$ Using the FOIL Method 1. We are asked to find $(fg)(x)$. 2. This means we need to multiply $f(x)$ and $g(x)$ together using the FOIL method (First, Outer, Inner, Last). - Write the product: $(fg)(x) = (2x - 3)(x + 5)$ Now, apply FOIL: - **First** terms: $2x \cdot x = 2x^2$ - **Outer** terms: $2x \cdot 5 = 10x$ - **Inner** terms: $-3 \cdot x = -3x$ - **Last** terms: $-3 \cdot 5 = -15$ Now, combine all the terms: $2x^2 + 10x - 3x - 15$ Combine like terms: $= 2x^2 + 7x - 15$ So, $(fg)(x) = 2x^2 + 7x - 15$. ::: --- ### 24. Find $(f/g)(x)$ for $f(x) = 2x - 3$ and $g(x) = x + 5$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \dfrac{f(x)}{g(x)}$ #### Step 2: Substitute $f(x) = 2x - 3$ and $g(x) = x + 5$ $(f/g)(x) = \dfrac{2x - 3}{x + 5}$ #### Solution: $(f/g)(x) = \dfrac{2x - 3}{x + 5}$ ::: --- ### 25. Find $(f+g)(x)$ for $f(x) = 2x^2$ and $g(x) = x - 6$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $f(x) = 2x^2$ and $g(x) = x - 6$ $(f+g)(x) = (2x^2) + (x - 6)$ #### Step 3: Simplify the expression $(f+g)(x) = 2x^2 + x - 6$ #### Solution: $(f+g)(x) = 2x^2 + x - 6$ ::: --- ### 26. Find $(f-g)(x)$ for $f(x) = 2x^2$ and $g(x) = x - 6$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $f(x) = 2x^2$ and $g(x) = x - 6$ $(f-g)(x) = (2x^2) - (x - 6)$ #### Step 3: Simplify the expression $(f-g)(x) = 2x^2 - x + 6$ #### Solution: $(f-g)(x) = 2x^2 - x + 6$ ::: --- ### 27. Find $(fg)(x)$ for $f(x) = 2x^2$ and $g(x) = x - 6$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $f(x) = 2x^2$ and $g(x) = x - 6$ $(fg)(x) = (2x^2)(x - 6)$ #### Step 3: Expand the expression $(fg)(x) = 2x^2(x - 6) = 2x^3 - 12x^2$ #### Solution: $(fg)(x) = 2x^3 - 12x^2$ ::: --- ### 28. Find $(f+g)(x)$ for $f(x) = 2x^3 + x^2 - 3x - 7$ and $g(x) = x^3 + 7x - 6$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f+g)(x)$ $(f+g)(x) = f(x) + g(x)$ #### Step 2: Substitute $f(x) = 2x^3 + x^2 - 3x - 7$ and $g(x) = x^3 + 7x - 6$ $(f+g)(x) = (2x^3 + x^2 - 3x - 7) + (x^3 + 7x - 6)$ #### Step 3: Combine like terms - Combine the $x^3$ terms: $2x^3 + x^3 = 3x^3$ - Combine the $x^2$ terms: $x^2$ - Combine the $x$ terms: $-3x + 7x = 4x$ - Combine the constant terms: $-7 - 6 = -13$ #### Step 4: Simplified expression $(f+g)(x) = 3x^3 + x^2 + 4x - 13$ #### Solution: $(f+g)(x) = 3x^3 + x^2 + 4x - 13$ ::: --- ### 29. Find $(f-g)(x)$ for $f(x) = 2x^3 + x^2 - 3x - 7$ and $g(x) = x^3 + 7x - 6$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f-g)(x)$ $(f-g)(x) = f(x) - g(x)$ #### Step 2: Substitute $f(x) = 2x^3 + x^2 - 3x - 7$ and $g(x) = x^3 + 7x - 6$ $(f-g)(x) = (2x^3 + x^2 - 3x - 7) - (x^3 + 7x - 6)$ #### Step 3: Distribute the negative sign $(f-g)(x) = 2x^3 + x^2 - 3x - 7 - x^3 - 7x + 6$ #### Step 4: Combine like terms - Combine the $x^3$ terms: $2x^3 - x^3 = x^3$ - Combine the $x^2$ terms: $x^2$ - Combine the $x$ terms: $-3x - 7x = -10x$ - Combine the constant terms: $-7 + 6 = -1$ #### Step 5: Simplified expression $(f-g)(x) = x^3 + x^2 - 10x - 1$ #### Solution: $(f-g)(x) = x^3 + x^2 - 10x - 1$ ::: --- ### 30. Find $(fg)(x)$ for $f(x) = 2x^5 + x - 1$ and $g(x) = x^2$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $f(x) = 2x^5 + x - 1$ and $g(x) = x^2$ $(fg)(x) = (2x^5 + x - 1) \cdot x^2$ #### Step 3: Distribute $x^2$ across all terms $(fg)(x) = 2x^5 \cdot x^2 + x \cdot x^2 - 1 \cdot x^2$ #### Step 4: Simplify each term - $2x^5 \cdot x^2 = 2x^7$ - $x \cdot x^2 = x^3$ - $-1 \cdot x^2 = -x^2$ #### Step 5: Simplified expression $(fg)(x) = 2x^7 + x^3 - x^2$ #### Solution: $(fg)(x) = 2x^7 + x^3 - x^2$ ::: --- ### 31. Find $(f/g)(x)$ for $f(x) = 2x^5 + x - 1$ and $g(x) = x^2$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(f/g)(x)$ $(f/g)(x) = \dfrac{f(x)}{g(x)}$ #### Step 2: Substitute $f(x) = 2x^5 + x - 1$ and $g(x) = x^2$ $(f/g)(x) = \dfrac{2x^5 + x - 1}{x^2}$ #### Step 3: Break up the fraction $(f/g)(x) = \dfrac{2x^5}{x^2} + \dfrac{x}{x^2} - \dfrac{1}{x^2}$ #### Step 4: Simplify each term - $\dfrac{2x^5}{x^2} = 2x^3$ - $\dfrac{x}{x^2} = x^{-1}$ - $\dfrac{1}{x^2}=x^{-2}$ #### Step 5: Simplified expression $(f/g)(x) = 2x^3 + x^{-1} - x^{-2}$ #### Solution: $(f/g)(x) = 2x^3 + x^{-1} - x^{-2}$ ::: --- ### 32. Find $(fg)(4)$ for $f(x) = x + 4$ and $g(x) = \sqrt{x - 3}$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $x = 4$ into $f(x)$ and $g(x)$ $f(4) = 4 + 4 = 8$ $g(4) = \sqrt{4 - 3} = \sqrt{1} = 1$ #### Step 3: Multiply the results $(fg)(4) = f(4) \cdot g(4) = 8 \cdot 1 = 8$ #### Solution: $(fg)(4) = 8$ ::: --- ### 33. Find $(fg)(1)$ for $f(x) = x + 4$ and $g(x) = \sqrt{x - 3}$. ::: spoiler <summary> Solution: </summary> #### Step 1: Definition of $(fg)(x)$ $(fg)(x) = f(x) \cdot g(x)$ #### Step 2: Substitute $x = 1$ into $f(x)$ and $g(x)$ $f(1) = 1 + 4 = 5$ $g(1) = \sqrt{1 - 3} = \sqrt{-2}$ (undefined for real numbers) #### Solution: $(fg)(1)$ is undefined because $g(1) = \sqrt{-2}$ is not a real number. ::: --- ## Cost, Revenue, and Profit Let $x$ be the number produced of some product in production. - $R(x)$ is the **revenue** obtained by selling x units of the product. That is: the amount of money buyers pay for x units of the product. - $C(x)$ is the **cost** of producing x units. This includes labor, raw materials, facilities, etc. - $P(x)$ is the **profit** obtained by the production and sale of x units. That is, the revenue minus the cost of production: $$P(x)=R(x)-C(x)$$ ### Example. The cost of producing $x$ cell phones is $C(x)=1000+200x$. They sell for $800 each. What is the profit from selling $x$ phones? - If they sell for $800 each, the revenue is $R(x)=800x$. Then: \begin{align} P(x)&=R(x)-C(x) \\ &=800x-(1000+200x) \\ &=800x-1000-200x \qquad Distribute the negative.\\ &=600x-1000 \end{align} - Note that $C(x)$ can be seen as the sum of fixed costs ($1000) and variable costs ($2 per phone.) ### Example. The cost of producing $x$ candles is $C(x)=100+3x$. They sell for $5 each. What is the profit from selling $x$ phones? - The revenue is $R(x)=5x$ \begin{align} P(x)&=R(x)-C(x) \\ &=5x-(100+3x) \\ &=5x-100-3x \\ &=2x-100 \end{align}