# JIT 4. Operations with Real Numbers (1.1) ## **Adding Two negative numbers:** $$-5 - 26 = ?$$ First add the associated positives ('absolute values'): $$5 + 26 = 31$$ Final answer has a negative: $$-5 - 26 = -31$$ - **Examples.** $$-14 - 17 =-31$$ $$-50 - 74 =-124$$ $$-48 - 57 =-105$$ ## **Adding Negative and positive numbers:** $$9 - 36 = ?$$ Subtract in opposite order: $$36 - 9 = 27$$ In original order it has a minus sign: $$9 - 36 = -27$$ - **Examples.** $$3 - 8 =-5$$ $$14 - 20 =-6$$ $$11 - 17 =-6$$ ## **Subtracting negatives.** $$4 - (-8) = ?$$ A double negative is positive; then add: $$4 - (-8) = 4 + 8 = 12$$ - **Examples.** $$7 - (-15) =7+15=22$$ $$-4 - (-8) =-4+8=4$$ $$-7 - (-1) =-7+1=-6$$ ## **Multiplication.** $$ (-3)(-5) = ? $$ $$ (-3)(5) = ? $$ $$ (3)(-5) = ? $$ - **Solution.** Multiply 3 and 5 first: $$ (3)(5) = 15 $$ Opposite signs give a negative: $$ (-3)(5) = -15 $$ $$ (3)(-5) = -15 $$ Same signs give a positive: $$ (3)(5) = 15 $$ $$ (-3)(-5) = 15 $$ - **Examples.** $$ (-7)(3) =-21 $$ $$ (5)(-6) =-30 $$ $$ (-2)(-9) =18 $$ ## **Division.** $$ \frac{8}{4} = ? $$ $$ \frac{-8}{4} = ? $$ $$ \frac{8}{-4} = ? $$ $$ \frac{-8}{-4} = ? $$ - **Solution.** Divide 8 and 4 first: $$ \frac{8}{4} = 2 $$ Opposite signs give a negative: $$ \frac{8}{-4} = -2 $$ $$ \frac{-8}{4} = -2 $$ Same signs give a positive: $$ \frac{-8}{-4} = 2 $$ Notice $$ \frac{8}{-4} = \frac{-8}{4} = \frac{8}{4} = -2 $$ and in general: $$ \frac{x}{-y} = \frac{-x}{y} = -\frac{x}{y} $$ - **Examples.** $$\dfrac{15}{-5}=-3$$ $$\dfrac{-20}{-4}=5$$ $$\dfrac{-18}{3}=-6$$ ## **JIT 19. Fractions: multiplication.** $$ \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} $$ - **Examples.** $$ \frac{2}{7} \cdot \frac{4}{3} =\dfrac{2 \cdot 4}{7 \cdot 3}=\dfrac{8}{21} $$ $$ \left( -\frac{2}{3} \right) \cdot \left( \frac{4}{7} \right) =\dfrac{(-2) \cdot (4)}{(3)(7)}=-\dfrac{8}{21} $$ $$ \left( -\frac{3}{4} \right) \cdot \left( -\frac{3}{7} \right) =\dfrac{(-3)(-3)}{(4)(7)}=\dfrac{9}{28} $$ ## **Fractions: division.** $$ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc} $$ - **‘Flip and multiply.’** - **Examples.** $$ \frac{2}{7} \div \frac{4}{3} =\frac{2}{7} \cdot \dfrac{3}{4}=\dfrac{6}{28}=\dfrac{3}{14} $$ $$ \dfrac{-\frac{2}{3} }{ \frac{5}{7} }=\left(-\dfrac{2}{3}\right) \div \dfrac{5}{7} = \left(-\dfrac{2}{3}\right) \cdot \dfrac{7}{5} = \dfrac{-14}{15} $$ $$\dfrac{-\frac{3}{4}}{-\frac{2}{7}}=\left(-\dfrac{3}{4} \right) \div \left(-\dfrac{2}{7} \right)=\left(-\dfrac{3}{4} \right) \cdot \left(-\dfrac{7}{2} \right)=\dfrac{21}{8}$$ ## **Fractions: special cases.** $$ 7 \cdot \left(\frac{4}{3}\right) = \frac{7}{1} \cdot \left(\frac{4}{3}\right) = $$ $$ 5 \cdot \left(\frac{7}{2}\right) = $$ $$ 3 \cdot \left(-\frac{2}{5}\right) = $$ $$ \frac{7}{4} \div \frac{3}{3} = \frac{7}{1} \div \frac{4}{3} = $$ $$ \frac{3}{-5} \div \frac{2}{2} = $$ $$ \left(\frac{7}{3}\right) \div 4 = \frac{7}{3} \div \frac{4}{1} = $$ $$ \left(\frac{2}{3}\right) \div -5 = $$ - **Fractions: addition and subtraction.** - **Get common denominators.** - **Key fact:** $$ \frac{a}{c} + \frac{b}{c} = \frac{a + b}{c} $$ - **Key fact:** $$ \frac{a}{b} = \frac{a \cdot c}{b \cdot c} $$ - **Example.** $$ \frac{2}{3} - \frac{4}{5} = ? $$ - **Solution.** Write $$ \frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15} $$ and $$ \frac{4}{5} = \frac{4 \cdot 3}{5 \cdot 3} = \frac{12}{15} $$ So $$ \frac{2}{3} - \frac{4}{5} = \frac{10}{15} - \frac{12}{15} = \frac{10 - 12}{15} = \frac{-2}{15} = -\frac{2}{15} $$ - **We say 15 is the ‘common denominator’ of the two fractions.** - **Examples.** $$ \frac{3}{4} - \frac{4}{5} = $$ $$ \frac{-2}{5} - \frac{1}{2} = $$ $$ \frac{-1}{3} + \frac{2}{7} = $$ $$ 7 - \frac{4}{5} = $$ ## **Reduction of fractions.** - **Recall key fact:** $$ \frac{a}{b} = \frac{a \cdot c}{b \cdot c} $$ $$ \frac{15}{10} = \frac{3 \cdot 5}{2 \cdot 5} = \frac{3}{2} $$ $$ \frac{24}{16} = $$ $$ \frac{12}{18} = $$ $$ \frac{44}{46} = $$ $$ \frac{45}{65} = $$ ## **Multiplication and division with decimals.** - **Multiplication by a power of 10 shifts the decimal point.** - **Examples.** $$ (10)(2.65) = 26.5 $$ $$ (100)(.0012) = .12 $$ $$ (1000)(-0.01845) = -18.45 $$ - Multiplication by 10 shifts the decimal point one place to the right. - Multiplication by 100 shifts the decimal point two places to the right. - Multiplication by 1000 shifts the decimal point three places to the right. - Etc. - **Examples.** $$ (10)(1.87) = $$ $$ (100)(-0.245) = $$ $$ (1000)(1.673) = $$ $$ (10000)(0.03654) = $$ ## **Division with decimals.** $$ 2.65 \div 10 = \frac{2.65}{10} = 0.265 $$ $$ 0.12 \div 100 = \frac{0.12}{100} = 0.0012 $$ $$ 18.54 \div 1000 = \frac{18.54}{1000} = 0.01854 $$ - Division by 10 shifts the decimal point one place to the left. - Division by 100 shifts the decimal point two places to the left. - Division by 1000 shifts the decimal point three places to the left. - Etc. - **Examples** $$ 87.16 \div 10 = $$ $$ 0.0463 \div 100 = $$ $$ -4.623 \div 1000 = $$ ## **JIT 9. Order of operations: PEMDAS.** (With Section 1.1) 1. Do everything in **P**arentheses first 2. Do **E**xponents next 3. Do **MD** (multiplication/division) next, left to right 4. Do **AS** (addition/subtraction) next, left to right - **Examples.** $$ 4 \cdot 3 + 4^2 \cdot 2 - 2(8 - 5) = $$ $$ 4(2 + 3 \cdot 2^3 + 6 - 3 - 2) = $$ $$ 3 \cdot (4 - 2)^2 - 2(5 + 4) - 7 = $$ ## **JIT 14. Equation Solving Principles.** (For use with section 1.1, section 1.3, and section 1.5) - **Principle:** Isolate the variable $x$. - **Examples.** ### A. Solve $$ 7x + 9 = 26 $$ - **Solution.** Subtract 9 from both sides of the equation: $$ 7x = 26 - 9 $$ $$ 7x = 17 $$ Divide both sides by 7: $$ x = \frac{17}{7} $$ --- ### B. Solve $$ 9y + 6 = 22y - 5 $$ - **Solution.** Gather like terms by subtracting $22y$ and subtracting 6: $$ 9y - 22y = -5 - 6 $$ $$ -13y = -11 $$ Divide both sides by $-13$: $$ y = \frac{-13}{-11} = \frac{13}{11} $$ --- ### C. Solve $$ 3(2x - 5) + 14 = 2(x - 9) $$ - **Solution.** Distribute: $$ 6x - 15 + 14 = 2x - 18 $$ Gather like terms: $$ 6x - 1 = 2x - 18 $$ Subtract $2x$, add 1: $$ 6x - 2x = -18 + 1 $$ $$ 4x = -17 $$ Divide by 4: $$ x = \frac{-17}{4} $$ - **Methods of solution.** - Distribute - Gather like terms - Add/subtract the same number to both sides - Multiply/divide the same number to both sides ### D. Solve $$ 2y - 7 = -18 $$ **Solution:** \begin{align} 2y - 7 &= -18 \\ 2y-7+7&=-18+7 \\ 2y&=-11 \\ \dfrac{2y}{2}&=\dfrac{-11}{2} \\ y&=-\dfrac{11}{2} \end{align} --- ### E. Solve $$ 2x + 5 = -7x + 20 $$ **Solution:** \begin{align} 2x + 5 &= -7x + 20 \\ 2x+7x + 5 &= -7x+7x + 20 \\ 9x+5&=20 \\ 9x+5-5&=20-5 \\ 9x&=15 \\ \dfrac{9x}{9}&=\dfrac{15}{9} \\ x&=\dfrac{5 \cdot 3}{3 \cdot 3} \\ x&=\dfrac{5}{3}. \end{align} --- ### F. Solve $$ 4(x - 2) - 13 = 3(3x + 7) $$ **Solution:** \begin{align} 4(x - 2) - 13 &= 3(3x + 7) \\ 4 \cdot x +4 \cdot (-2) - 13 &= 3 \cdot (3x)+3 \cdot (7) \\ 4x-8 - 13 &= 9x+21 \\ 4x-21 &= 9x+21 \\ 4x-9x-21 &= 9x-9x+21 \\ -5x-21 &= 21 \\ -5x-21+21 &= 21+21 \\ -5x&=42 \\ \dfrac{-5x}{-5}&=\dfrac{42}{-5} \\ x&=-\dfrac{42}{5} \end{align}
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up