## JIT 5. Number line inequality ![image](https://hackmd.io/_uploads/Bk-YqDCuke.png) ### Examples True or false? | Inequality | Verbal Translation | True/False | |------------|----------------------------------|------------| | 5 > -4 | 5 is greater than -4 | True | | -2 ≤ -7 | -2 is less than or equal to -7 | False | | 2 < -10 | 2 is less than -10 | False | | 8 ≥ -9 | 8 is greater than or equal to -9| True | | -5 ≥ -7 | -5 is greater than or equal to -7 | True | | -3 ≤ 4 | -3 is less than or equal to 4 | True | ## JIT 6 Interval Notation; sets of real numbers ### Figure 2: ![image](https://hackmd.io/_uploads/r1_n9wCu1e.png) Inequality: $-1 \leq x \leq 3$ Interval notation: $[-1,3]$. (Include $-1,3$). ### Figure 3: ![image](https://hackmd.io/_uploads/r1TIov0dkx.png) Inequality: $-1 < x < 3$ Interval notation: $(-1,3)$. (Exclude $-1,3$). ### Figure 4: ![image](https://hackmd.io/_uploads/HkLPoPRdke.png) Inequality: $-1 \leq x < 3$ Interval notation: $[-1,3)$. (Include $-1$, exclude $3$). ### Figure 5: ![image](https://hackmd.io/_uploads/HyUrnwAdkl.png) Inequality: $-1 < x \leq 3$ Interval notation: $[-1,3)$. (Exclude $-1$, include $3$). ### Figure 6: ![image](https://hackmd.io/_uploads/BkJUnwC_1l.png) Inequality: $-1 <x$ or $x >-1$ Interval notation: $(-1,\infty)$. (Exclude $-1$, always exclude $\infty$). ### Figure 7: ![image](https://hackmd.io/_uploads/H18L3DRdkl.png) Inequality: $-1 \leq x$ or $x \geq -1$ Interval notation: $[-1,\infty)$. (Include $-1$, always exclude $\infty$). ### Figure 8: ![image](https://hackmd.io/_uploads/B1zdnvRd1g.png) Inequality: $x<3$ or $3>x$ Interval notation: $(-\infty,3)$. (Always exclude $-\infty$, exclude $3$) ### Figure 9: ![image](https://hackmd.io/_uploads/S13u3DAd1x.png) Inequality: $x\leq 3$ or $3 \geq x$ Interval notation: $(-\infty,3]$. (Always exclude $-\infty$, include $3$) - In $(a, b)$ or $[a, b]$ notation, $a$ is always less than $b$. - The $\infty$ symbol is only on the right. - The $-\infty$ symbol is only on the left. ### Examples Draw each of the following on a number line and give the inequality. If the notation is wrong, state why. 1. $[2, 5]$ Inequality: $2 \leq x \leq 5$ *Correct notation.* 2 is less than 5. 2. $(2, 7]$ Inequality: $2 < x \leq 7$ *Correct notation.* 2 is less than 7. 3. $[8, 5]$ *Incorrect notation: Lower bound (8) is greater than upper bound (5).* 8 is not less than 5. 4. $(-8, 1]$ Inequality: $-8 < x \leq 1$ *Correct notation.* -8 is less than 1. 5. $(-\infty, 4]$ Inequality: $x \leq 4$ *Correct notation.* $-\infty$ is less than 4. 6. $(3, \infty)$ Inequality: $x > 3$ *Correct notation.* $3$ is less than $\infty$. 7. $(1, 7)$ Inequality: $1 < x < 7$ *Correct notation.* 1 is less than 7. 8. $(3, -\infty)$ *Incorrect notation: The lower bound (3) must be smaller than the upper bound (-∞).* Should be $(-\infty, 3)$. 9. $[-2, \infty)$ Inequality: $-2 \leq x$ *Correct notation.* -2 is less than $\infty$. 10. $(\infty, 6)$ *Incorrect notation: Infinity cannot be the starting value.* Should be $(-\infty, 6)$. 11. $[1, -6]$ *Incorrect notation: The lower bound (1) must be smaller than the upper bound (-6).* Should be $[-6, 1]$. 12. $(8, 0)$ *Incorrect notation: The lower bound (8) must be smaller than the upper bound (0).* Should be $(0, 8)$. ## 1.2 Functions and graphs. - A **function** is a correspondence between a set of inputs, called the **domain**, and a set of outputs, called the **range** such that every input in the domain corresponds to exactly one member of the range. - Put another way, every input produces exactly one output. | domain (inputs) | range (outputs) | |----------------|----------------| | 1 | 3 | | 2 | 5 | | 3 | 7 | | 3 | 8 | | 4 | 3 | | 4 | 7 | | 5 | 6 | - Not a function because the input 3 has two outputs 7 and 8. Also since 4 has two outputs 3 and 7. --- | domain (inputs) | range (outputs) | |----------------|----------------| | 1 | 3 | | 2 | 5 | | 3 | 7 | | 4 | 3 | | 5 | 6 | - This is a function since every input has only one output. - The fact that 3 appears twice in the range is not a problem. --- ### **Example.** Is this a function? Explain. | domain | range | |--------|-------| | 1 | 3 | | 2 | 3 | | 3 | 7 | | 4 | 3 | | 5 | 3 | | 6 | 7 | | 7 | 3 | | 8 | 7 | Answer: Yes, since every input goes to one output. --- ### **Example.** Is this a function? Explain. | domain | range | |--------|-------| | 1 | 3 | | 2 | 3 | | 3 | 7 | | 4 | 3 | | 4 | 7 | | 6 | 7 | | 7 | 3 | | 8 | 7 | **Answer**: No, since the input 4 goes to the output 3 and 7. ### **Example.** Is this a function? Explain. (The domain and range don’t have to be numbers.) | domain | range | |--------|-------| | a | 3 | | b | 5 | | c | 9 | | d | 11 | | b | 13 | | c | 15 | | f | 17 | | g | 19 | **Answer**: No, since the input $c$ has two outputs 9 and 15. --- - It is more compact to express the correspondence as ordered pairs \((x, y)\) where \(x\) is in the domain and \(y\) is in the range. For example, the function ### Ordered pairs. | domain | range | |--------|-------| | 1 | 3 | | 2 | 3 | | 3 | 7 | | 4 | 3 | | 6 | 7 | | 7 | 3 | | 8 | 7 | can be written as $\{(1,3), (2,3), (3,7), (4,3), (6,7), (7,3), (8,7)\}$. Note that the above is a function since every input has exactly one output. ### **Example.** Is the following a function? Identify the domain and range. $$\{(1,3), (2,3), (3,7), (4,3), (6,7), (6,9), (7,3), (8,7), (8,9)\}$$ **Answer**: No, since one input 6 goes to two outputs 7 and 9. ## Using arrows between domain and range. - On the left we have inputs and on the right we have outputs: **Question:** Is this a function? ![image](https://hackmd.io/_uploads/rkvPd-Ztkl.png) - This says input 1 goes to 2, 3, and 4. - Input 2 goes to 3 and 4. - Input 3 goes to 1 and 3. - Input 4 goes to 2 and 4. **Answer:** No, one input goes to more than one output. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/BysO_WbY1l.png) **Answer:** No, one input 2 goes to more than one output 3 and 4. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/HyGYu-WYJl.png) **Answer:** Yes, every input goes to exactly one output. The fact that multiple inputs 2 and 3 go to single output 1 does not matter. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/BktY_bbt1x.png) **Answer:** No, since one input 3 goes to two outputs 1 and 3. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/B175OZWK1x.png) **Answer:** No, since one input 3 goes to two outputs 2 and 3. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/BJj5_-Wtkx.png) **Answer:** Yes, every input goes to exactly one output. --- **Question:** Is this a function? ![image](https://hackmd.io/_uploads/B1bjdWZtyx.png) **Answer:** No, since one input 2 goes to two outputs 3 and 4. --- ### Introduction We will explore how to evaluate a linear function $f(x) = 2x + 5$ by plugging in different values of $x$. This process shows how the input in the domain corresponds to an output in the range. --- #### **Example 1a**: Find $f(3)$ for $y = f(x) = 2x + 5$. \begin{align} f(x) &= 2x + 5 \\ f(3) &= 2(3) + 5 \\ &= 6 + 5 \\ &= 11 \end{align} Thus, $f(3) = 11$. --- #### **Example 1b**: Find $f(-7)$ for $y = f(x) = 2x + 5$. \begin{align} f(x) &= 2x + 5 \\ f(-7) &= 2(-7) + 5 \\ &= -14 + 5 \\ &= -9 \end{align} Thus, $f(-7) = -9$. --- #### **Example 1c**: Find $f(-5)$ for $y = f(x) = 2x + 5$. \begin{align} f(x) &= 2x + 5 \\ f(-5) &= 2(-5) + 5 \\ &= -10 + 5 \\ &= -5 \end{align} Thus, $f(-5) = -5$. --- #### **Example 1d**: Find $f\left( \frac{3}{7} \right)$ for $y = f(x) = 2x + 5$. \begin{align} f(x) &= 2x + 5 \\ f\left( \frac{3}{7} \right) &= 2 \left( \frac{3}{7} \right) + 5 \\ &= \frac{6}{7} + 5 \\ &= \frac{6}{7} + \frac{35}{7} \quad \text{(convert 5 to } \frac{35}{7}\text{)} \\ &= \frac{41}{7} \end{align} --- Thus, $f\left( \frac{3}{7} \right) = \frac{41}{7}$. --- #### **Example 1e**: Find $f\left( -\frac{2}{5} \right)$ for $y = f(x) = 2x + 5$. \begin{align} f(x) &= 2x + 5 \\ f\left( -\frac{2}{5} \right) &= 2 \left( -\frac{2}{5} \right) + 5 \\ &= -\frac{4}{5} + 5 \\ &= -\frac{4}{5} + \frac{25}{5} \quad \text{(convert 5 to } \frac{25}{5}\text{)} \\ &= \frac{21}{5} \end{align} --- Thus, $f\left( -\frac{2}{5} \right) = \frac{21}{5}$. --- #### **Example 2a.** For $y = g(x) = x^2$, find: (a) $g(3) = 3^2 = 3 \cdot 3=9$ --- #### **Example 2b.** For $y = g(x) = x^2$, find: (b) $g\left( -\frac{2}{7} \right)$ \begin{align} g\left( -\frac{2}{7} \right) &= \left( -\frac{2}{7} \right)^2 \\ &= \left( -\frac{2}{7} \right) \left( -\frac{2}{7} \right) \\ &= \frac{(-2) \cdot (-2)}{7 \cdot 7} \\ &= \frac{4}{49} \end{align} --- #### **Example 2c .** For $y = g(x) = x^2$, find: (c) $g(3t)$ \begin{align} g(3t)&= (3t)^2 \\ &=(3t)(3t) \\ &= (3 \cdot 3)(t \cdot t) \\ &= 9t^2 \end{align} --- #### **Example 2d.** For $y = g(x) = x^2$, find: (d) $g\left( -\frac{6t}{5} \right)$ \begin{align} g\left( -\frac{6t}{5} \right)&= \left( -\frac{6t}{5} \right)^2 \\ &= \left( -\frac{6t}{5} \right)\left( -\frac{6t}{5} \right) \\ &= \frac{36t^2}{25} \end{align} --- #### **Example 2e.** For $y = g(x) = x^2$, find: (e) $g(s + t)$ \begin{align} g(s + t) &= (s + t)^2 \\ &=(s+t)(s+t) \end{align} To expand $(s + t)(s + t)$, we use the distributive property. --- To expand $(s + t)(s + t)$, we use the distributive property. Here’s the multiplication table: | | $s$ | $t$ | |--------|-------|-------| | **$s$**| $s^2$ | $st$ | | **$t$**| $ts$ | $t^2$ | --- Now, sum the products: $(s + t)(s + t) = s^2 + st + ts + t^2$ Since $st = ts$, this simplifies to: $g(s+t)=(s + t)^2 = s^2 + 2st + t^2$ --- **Example 3a.** For $y = h(x) = \frac{x + 2}{x - 1}$, find: (a) $h(3)$ \begin{align} h(3) &= \frac{3 + 2}{3 - 1} \\ &= \frac{5}{2} \end{align} Thus, $h(3) = \frac{5}{2}$. --- **Example 3b.** For $y = h(x) = \frac{x + 2}{x - 1}$, find: (b) $h\left( \frac{2}{3} \right)$ \begin{align} h\left( \frac{2}{3} \right) &= \frac{\frac{2}{3} + 2}{\frac{2}{3} - 1} \\ &= \frac{\frac{2}{3} + \frac{6}{3}}{\frac{2}{3} - \frac{3}{3}} \\ &= \frac{\frac{8}{3}}{-\frac{1}{3}} \\ &= -8 \end{align} --- Thus, $h\left( \frac{2}{3} \right) = -8$. --- **Example 3c.** For $y = h(x) = \frac{x + 2}{x - 1}$, find: (c) $h(-5)$ \begin{align} h(-5) &= \frac{-5 + 2}{-5 - 1} \\ &= \frac{-3}{-6} \\ &= \frac{1}{2} \end{align} Thus, $h(-5) = \frac{1}{2}$. --- **Example 3d.** For $y = h(x) = \frac{x + 2}{x - 1}$, find: (d) $h(-9)$ \begin{align} h(-9) &= \frac{-9 + 2}{-9 - 1} \\ &= \frac{-7}{-10} \\ &= \frac{7}{10} \end{align} Thus, $h(-9) = \frac{7}{10}$. --- **Example 3d.** For $y = h(x) = \frac{x + 2}{x - 1}$, find $h\left( \frac{3}{5} \right)$: \begin{align} h\left( \frac{3}{5} \right) &= \frac{\frac{3}{5} + 2}{\frac{3}{5} - 1} \\ &= \frac{\frac{3}{5} + \frac{10}{5}}{\frac{3}{5} - \frac{5}{5}} \\ &= \frac{\frac{13}{5}}{-\frac{2}{5}} \\ &= -\frac{13}{2} \end{align} --- Thus, $h\left( \frac{3}{5} \right) = -\frac{13}{2}$. --- (f) What about $h(1)$? For $x = 1$, we have: \begin{align} h(1) &= \frac{1 + 2}{1 - 1} \\ &= \frac{3}{0} \end{align} Since division by zero is undefined, $h(1)$ is undefined. --- Thus, $h(1)$ is undefined. --- **Example 4a.** For $y = g(x) = \sqrt{1 + x}$, find: (a) $g(3)$ \begin{align} g(3) &= \sqrt{1 + 3} \\ &= \sqrt{4} \\ &= 2 \end{align} Thus, $g(3) = 2$. --- **Example 4b.** For $y = g(x) = \sqrt{1 + x}$, find $g\left( \frac{1}{4} \right)$: \begin{align} g\left( \frac{1}{4} \right) &= \sqrt{1 + \frac{1}{4}} \\ &= \sqrt{\frac{4}{4} + \frac{1}{4}} \\ &= \sqrt{\frac{5}{4}} \\ &= \frac{\sqrt{5}}{2} \end{align} Thus, $g\left( \frac{1}{4} \right) = \frac{\sqrt{5}}{2}$. --- **Example 4c.** For $y = g(x) = \sqrt{1 + x}$, find: (c) $g(0)$ \begin{align} g(0) &= \sqrt{1 + 0} \\ &= \sqrt{1} \\ &= 1 \end{align} Thus, $g(0) = 1$. --- **Example 4d.** For $y = g(x) = \sqrt{1 + x}$, find: (d) $g(8)$ \begin{align} g(8) &= \sqrt{1 + 8} \\ &= \sqrt{9} \\ &= 3 \end{align} Thus, $g(8) = 3$. --- **Example 4e.** For $y = g(x) = \sqrt{1 + x}$, find: (e) $g\left( -\frac{5}{9} \right)$ \begin{align} g\left( -\frac{5}{9} \right) &= \sqrt{1 - \frac{5}{9}} \\ &= \sqrt{\frac{9}{9} - \frac{5}{9}} \\ &= \sqrt{\frac{4}{9}} \\ &= \frac{2}{3} \end{align} Thus, $g\left( -\frac{5}{9} \right) = \frac{2}{3}$. --- **Example 4f.** For $y = g(x) = \sqrt{1 + x}$, find: (f) $g(4)$ \begin{align} g(4) &= \sqrt{1 + 4} \\ &= \sqrt{5} \end{align} Thus, $g(4) = \sqrt{5}$. --- **What can we say about $g(-7)$?** For $g(x) = \sqrt{1 + x}$, if $x = -7$: \begin{align} g(-7) &= \sqrt{1 - 7} \\ &= \sqrt{-6} \end{align} Since the square root of a negative number is not defined in the real number system, $g(-7)$ is undefined in the real numbers. Thus, $g(-7)$ is undefined in the real number system. --- **Graph of a function** - The graph of $y = f(x)$ is the set of points $(x, f(x))$ where $x$ is in the domain of $f(x)$. **Example**: Graph $y = f(x) = 2x - 2$ by plugging in values for $x$ and connecting the points. --- | **$x$** | **$y = f(x) = 2x - 2$** | |:--------:|:-----------------------:| | $1$ | $2(1) - 2 = 0$ | | $2$ | $2(2) - 2 = 2$ | | $3$ | $2(3) - 2 = 4$ | | $4$ | $2(4) - 2 = 6$ | | $0$ | $2(0) - 2 = -2$ | | $-1$ | $2(-1) - 2 = -4$ | | $-2$ | $2(-2) - 2 = -6$ | | $5$ | $2(5) - 2 = 8$ | --- Now, plot the points $(1,0)$, $(2,2)$, $(3,4)$, $(4,6)$, $(0,-2)$, $(-1,-4)$, $(-2,-6)$, and $(5,8)$ on a coordinate plane and connect them to visualize the line for the function $y = 2x - 2$. --- ![image](https://hackmd.io/_uploads/SyTFi-WK1x.png) --- ## Steps to Graph $y = g(x) = x^2 - 5$ 1. Choose a range of $x$ values. 2. Plug each $x$ value into the function $g(x) = x^2 - 5$. 3. Record the result as the corresponding $y$ value. 4. Fill out the table with the $x$ and $y$ values. 5. Plot the points on a graph and connect them to visualize the function. --- ### Example: We will choose $x = 0, 1, 2, 3, 4, -1, -2$ and plug them into the function: --- | $x$ | $y = g(x) = x^2 - 5$ | |---------|----------------------------| | 0 | $0^2 - 5 = -5$ | | 1 | $1^2 - 5 = -4$ | | 2 | $2^2 - 5 = -1$ | | 3 | $3^2 - 5 = 4$ | | 4 | $4^2 - 5 = 11$ | | -1 | $(-1)^2 - 5 = -4$ | | -2 | $(-2)^2 - 5 = -1$ | --- ### Graph: Now, plot these points and connect them to form the graph of $y = g(x) = x^2 - 5$. ![image](https://hackmd.io/_uploads/BJbynZZtkl.png) --- ### Reading Graphs **Question** : Using the graph below, find $f(0)$, $f(1)$, $f(2)$, $f(3)$, $f(-1)$, and $f(-2)$. ![image](https://hackmd.io/_uploads/rkwV2ZZFyg.png) --- ### Reading Graphs: Based on the graph, the values of $f(x)$ are: | Ordered Pair (x, f(x)) | Function Notation | |------------------------|------------------| | (0, 2) | $f(0) = 2$ | | (1, 3) | $f(1) = 3$ | | (-1, 1) | $f(-1) = 1$ | | (2, -2) | $f(2) = -2$ | | (3, 2) | $f(3) = 2$ | | (-2, 2) | $f(-2) = 2$ |