# **Mathematics 105 Exam 3 Practice (old)** **November, 2024** --- > **Answer the questions clearly.** > No calculators, books or notes. Show all work. --- ### 1. Solve the equation: $$2(2x+1)-3(-x+5)=4(3x-1)$$ ### Solution: {%youtube gYsXD1OwdtU %} \begin{align} 2(2x+1)-3(-x+5)&=4(3x-1) \\ (2)(2x)+(2)(1)+(-3)(-x)+(-3)(5)&=(4)(3x)+(4)(-1) \\ 4x+2+3x-15&=12x-4 \\ 7x-13&=12x-4 \\ -5x-13&=-4 \\ -5x&=9 \\ x&=-\dfrac{9}{5} \end{align} --- ### 2. Let $f(x)=x^4$ and $g(x)=2x^5-3x^2+4$. Calculate and simplify: - $(fg)(x)=$ {%youtube gYsXD1OwdtU %} ### Solution: \begin{align} (x^4)(2x^5-3x^2+4)&=(x^4)(2x^5)+(x^4)(-3x^2)+(x^4)(4) \\ &=2x^9-3x^6+4x^4 \end{align} - $(g/f)(x)=$ ### Solution: \begin{align} \dfrac{2x^5-3x^2+4}{x^4}&=\dfrac{2x^5}{x^4}-\dfrac{3x^2}{x^4}+\dfrac{4}{x^4} \\ &=2x^{5-4}-3x^{2-4}+4x^{0-4} \\ &=2x^{1}-3x^{-2}+4x^{-4} \\ &=2x-3x^{-2}+4x^{-4} \end{align} --- ### 3. Let $f(x)=2x^5$ and $g(x)=3x^4-2x^3+2$. Calculate and simplify: - $(g/f)(x)=$ - $(f/g)(x)=$ ### Solution: - $(g/f)(x)=\dfrac{3x^4-2x^3+2}{2x^5}=\dfrac{3x^4}{2x^5}-\dfrac{2x^3}{2x^5}+\dfrac{2}{2x^5}=\dfrac{3}{2}x^{-1}-x^{-2}+x^{-5}$ - $(f/g)(x)=\dfrac{2x^5}{3x^4-2x^3+2}$ --- ### 4. Let $f(x)=x^2+2$ and $g(x)=3x-2$. Calculate and simplify: - $(f \circ g)(x)=$ - $(g \circ f)(x)=$ ### Solution: - $(f \circ g)(x)$ means plug $g$ into $f$. $(f \circ g)(x)=(3x-2)^2+2$ Simplification: \begin{align} (f \circ g)(x)&=(3x-2)^2+2 \\ &=(3x-2)(3x-2)+2 \\ &=(3x)(3x)+(3x)(-2)+(-2)(3x)+(-2)(-2)+2 \\ &=9x^2-6x-6x+4+2 \\ &=9x^2-12x+6 \end{align} - $(g \circ f)(x)$ means plug $f$ into $g$. $(g \circ f)(x)=3(x^2+2)-2$ Simplification: \begin{align} (g \circ f)(x)&=3(x^2+2)-2 \\ &=(3)(x^2)+(3)(2)-2 \\ &=3x^2+6-2 \\ &=3x^2+4 \end{align} --- ### 5. Let $h(x)=(7-2x)^4$. Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)$. - $f(x)=$ - $g(x)=$ ### Solution: | Outside Function| Inside Function| |---|---| |$f(u)=u^4$|$g(x)=7-2x$ | --- ### 6. Let $$h(x)=\frac{1}{(2x+5)^3}$$ Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)$. - $f(x)$ - $g(x)$ ### Solution: | Outside Function| Inside Function| |---|---| |$f(u)=\dfrac{1}{u^3}$|$g(x)=2x+5$ | --- ### 7. Let $$h(x)=\sqrt{\frac{2x+1}{3x-5}}$$ Find $f(x)$ and $g(x)$ such that $h(x)=(f \circ g)(x)$. - $f(x)=$ - $g(x)=$ ### Solution: | Outside Function| Inside Function| |---|---| |$f(u)=\sqrt{u}$|$g(x)=\dfrac{2x+1}{3x-5}$ | --- ### 8. Solve the equation: $(3x+4)(x-2)=0$ ### Solution: $$(3x+4)(x-2)=0$$ Zero Product Property |$3x+4=0$| $x-2=0$| |---|---| |$3x=-4$| $x=2$| |$x=-\dfrac{4}{3}$|$x=2$| --- ### 9. Solve the equation: $3x^2-15=0$ ### Solution: \begin{align} 3x^2-15&=0 \\ \dfrac{3x^2-15}{3}&=\dfrac{0}{3} \\ \dfrac{3x^2}{3}-\dfrac{15}{3}&=0 \\ x^2-5&=0 \\ x^2&=5 \\ \sqrt{x^2}&=\pm \sqrt{5} \\ x&=\pm \sqrt{5} \\ x&=-\sqrt{5},x=+\sqrt{5} \end{align} --- ### 10. Solve the equation: $7x^2=4x$ ### Solution: \begin{align} 7x^2&=4x \\ 7x^2-4x&=0 \\ x(7x)+x(-4)&=0 \\ x(7x-4)&=0 \end{align} Zero Product Property |$x=0$|$7x-4=0$| |---|---| |$x=0$|$7x=4$| |$x=0$|$x=\dfrac{4}{7}$| --- ### 11. Solve the equation by factoring: $x^2-10x-24=0$ ### Solution: $x^2$ splits as $(x)(x)$. $-24$ splits as: 1. $(24)(-1)$, 2. $(-24)(1)$ 3. $(2)(-12)$ 4. $(-2)(12)$ 5. $(3)(-8)$ 6. $(-3)(8)$ 7. $(4)(-6)$ 8. $(-4)(6)$ Setting up all the possibilities and FOILing out to check which one works: |Possibilities|FOIL work| FOIL simplified| |---|---|---| |$(x+24)(x-1)$| $x^2-x+24x-24$| $x^2+23x-24$| |$(x-24)(x+1)$| $x^2+x-24x-24$| $x^2-23x-24$| |$\checkmark$ $(x+2)(x-12)$ $\checkmark$| $x^2-12x+2x-24$| $\checkmark$$x^2-10x-24$ $\checkmark$| |$(x-2)(x+12)$| $x^2+12x-2x-24$| $x^2+10x-24$| |$(x+3)(x-8)$| $x^2-8x+3x-24$| $x^2-5x-24$| |$(x-3)(x+8)$| $x^2+8x-3x-24$| $x^2+5x-24$| |$(x+4)(x-6)$| $x^2-6x+4x-24$| $x^2-2x-24$| |$(x-4)(x+6)$| $x^2+6x-4x-24$| $x^2+2x-24$| Thus we factor the equation as $$(x+2)(x-12)=0$$ Zero Product Property |$x+2=0$|$x-12=0$| |---|---| |$x=-2$|$x=12$| --- ### 12. Solve the equation by factoring: $6x^2-2x=4$ ### Solution: Get it into $ax^2+bx+c=0$ form by subtracting 4 from both sides to get: $$6x^2-2x-4=0$$ Then dividing both sides by the greatest common factor GCF $2$: $$3x^2-x-2=0$$ $3x^2$ splits as $(3x)(x)$. $-2$ splits as: 1. $(2)(-1)$, 2. $(-2)(1)$ 3. $(1)(-2)$ 4. $(-1)(2)$ Setting up all the possibilities and FOILing out to check which one works: |Possibilities|FOIL work| FOIL simplified| |---|---|---| | $\checkmark$ $(3x+2)(x-1)$ $\checkmark$ | $3x^2-3x+2x-2$ | $\checkmark$ $3x^2-x-2$ $\checkmark$| |$(3x-2)(x+1)$ | $3x^2+3x-2x-2$ | $3x^2+x-2$ | |$(3x+1)(x-2)$ | $3x^2-6x+x-2$ | $3x^2-5x-2$ | |$(3x-1)(x+2)$ | $3x^2+6x-x-2$ | $3x^2+5x-2$ | Thus we factor the equation as $$(3x+2)(x-1)=0$$ Zero Product Property |$3x+2=0$|$x-1=0$| |---|---| |$3x=-2$|$x=1$| |$x=-\dfrac{2}{3}$|$x=1$| --- ### 13. Solve the equation with the quadratic formula: $$2x^2-2x-5=0$$ Use: $$x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ ### Solution: #### Step 1. Make sure it's in $ax^2+bx+c=0$ form: $$2x^2-2x-5=0$$ is in the form $ax^2+bx+c=0$ $\checkmark$ #### Step 2. Identify the $a,b,c$ as the numbers in front of each term (coefficients). $a=2$ $b=-2$ $c=-5$ #### Step 3. Calculate $b^2-4ac$: \begin{align} b^2-4ac&=(2)^2-4(2)(-5) \\ &=4-4(2)(-5) \\ &=4+(-4)(2)(-5) \\ &=4+(-8)(-5) \\ &=4+40 \\ &=44 \end{align} #### Step 4. Square root and simplify. $$\sqrt{44}=\sqrt{4}\sqrt{11}=2\sqrt{11}$$ #### Step 5. Plug it into the last part of the Quadratic formula: \begin{align} x&=\dfrac{-b \pm 2\sqrt{11}}{2a} \\ x&=\dfrac{-(-2) \pm 2\sqrt{11}}{2(2)} \\ x&=\dfrac{2 \pm 2\sqrt{11}}{4} \\ x&=\dfrac{2}{4} \pm \dfrac{2\sqrt{11}}{4} \\ x&=\dfrac{1}{2} \pm \dfrac{\sqrt{11}}{2} \\ \end{align} $x=\dfrac{1}{2}+\dfrac{\sqrt{11}}{2}$ and $x=\dfrac{1}{2}-\dfrac{\sqrt{11}}{2}$. --- ### 14. Solve the equation: $x^4-8x^2+7=0$ ### Solution: Substitute $u=x^2$ into $x^4-8x^2+7=0$: \begin{align} x^4-8x^2+7&=0 \\ u^2-8u+7&=0 \\ (u-1)(u-7)&=0 \end{align} Zero Product Property |$u-1=0$|$u-7=0$| |---|---| |$u=1$|$u=7$| |$x^2=1$|$x^2=7$| |$\sqrt{x^2}=\pm \sqrt{1}$ | $\sqrt{x^2}=\pm \sqrt{7}$| |$x=\pm 1$| $x=\pm \sqrt{7}$| Four solutions: $x=-1$, $x=1$, $x=-\sqrt{7}$, and $x=\sqrt{7}$. --- ### 15. Solve the equation: $y^3+7y^2+12y=0$ ### Solution: --- ### 16. Solve: $$\frac{1}{4}+\frac{4}{x}=\frac{1}{3}+\frac{3}{x}$$ ### Solution: --- ### 17. Solve: $$7+\sqrt{2x-5}=10$$ ### Solution: --- ### 18. For (a) and (b), circle one of the four sketches to describe the end behavior of the graph of the function. **Circle the leading term of the polynomial.** **(a)** $f(x) = -3x^3 - 2x^2 - x + 4$ (Circle leading term above.) *(Insert sketches)* ### Solution: --- **(b)** $g(x) = -2x^3 + 4x^4 + 20x$ (Circle leading term above.) *(Insert sketches)* ### Solution: --- ### 19. Find the zeroes of $$k(x) = (x+1)^3(x+4)^2x^5$$ and state the multiplicity of each. ### Solution: --- ### 20. Let $$k(x) = -2x^4(x+2)$$ **(a)** Find the zeroes and state the multiplicity of each. **(b)** What is the leading term of $k(x)$? **(c)** Draw a rough graph, illustrating end behavior and behavior at intercepts (cross or bounce). *(Insert graph grid)* ### Solution: --- ### 21. Let $$g(x)=\frac{3x^2+2}{x^2+5x}$$ Find the vertical asymptotes and horizontal asymptotes of $g(x)$. ### Solution: #### Vertical Asymptote: Set bottom=0 \begin{align} x^2+5x&=0 \\ x(x)+x(5)&=0 \\ x(x+5)&=0 \end{align} Zero Product Property |$x=0$|$x+5=0$| |---|---| |$x=0$|$x=-5$| $g(x)$ has two vertical asymptotes: $x=0$ and $x=-5$. #### Horizontal Asymptote: Ignore lower terms $$g(x)=\frac{3x^2+2}{x^2+5x}$$ Ignore the lower terms 2 and 5x: $$\frac{3x^2+2}{x^2+5x}=\dfrac{3x^2+2}{x^2+5x} \approx \dfrac{3x^2}{x^2}=3$$ $g(x)$ has a horizontal asymptote $y=3$. --- ### 22. Let $$f(x)=\frac{2x+2}{3x-6}$$ Graph $y = f(x)$, labeling: - **x-intercepts:** - **y-intercept:** - **Vertical asymptotes:** - **Horizontal asymptotes:** *(Insert graph grid)* ### Solution: ---