# 1.1 Lecture Notes ## Graphing in the $xy$ plane. ![image](https://hackmd.io/_uploads/HktUIqAw1g.png) - Horizontal line across middle is called the x axis. - Vertical line in the middle is called the y axis. - They meet at the origin. - Points in the plane are labeled with an ordered pair $(x, y)$. ![image](https://hackmd.io/_uploads/SkHdIcCP1g.png) - To find, or ‘plot’ the point $(2, 3)$, begin at origin and go right 2 units, then up 3 units. 'Walk then Climb'. - Plot $(1, 5)$, $(6, 4)$, $(2, 1)$ and $(4, 6)$. ### Points and Directions Table | **Point (x, y)** | **Walk (Right/Left)** | **Climb (Up/Down)** | |-------------------|-----------------------|---------------------| | $(2, 3)$ | Right 2 units | Up 3 units | | $(1, 5)$ | Right 1 unit | Up 5 units | | $(6, 4)$ | Right 6 units | Up 4 units | | $(2, 1)$ | Right 2 units | Up 1 unit | | $(4, 6)$ | Right 4 units | Up 6 units | ![image](https://hackmd.io/_uploads/BkTgv9CvJl.png) - **Distance between points.** - Given points $(x_1, y_1)$ and $(x_2, y_2)$. - Distance between them is $$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$ - **Example 1:** $(1, 4)$ and $(8, 7)$. $$ d = \sqrt{(8 - 1)^2 + (7 - 4)^2} $$ $$ d = $$ - **Example 2:** $(1, -4)$ and $(-3, 2)$. - **Example 3:** $(-2,-3)$ and $(5,-1)$. - **Midpoint between two points.** - Given points $(x_1, y_1)$ and $(x_2, y_2)$. - Midpoint between them is $$ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) $$ - **Midpoint Examples.** - Example 1: $(2,4)$ and $(6,10)$. - Example 2: $(2,5)$ and $(3,7)$. - Example 3: $(3,-1)$ and $(-5,-7)$. - Example 4: $(2,-4)$ and $(-3,-6)$. - Example 5: $(1,5)$ and $(-4,-6)$. - Example 6: $\left(\frac{3}{2}, -2\right)$ and $\left(-\frac{5}{4}, 9\right)$. - Example 7: $\left(-2, -\frac{4}{3}\right)$ and $\left(-7, \frac{23}{6} \right)$. - Example 8 : $\left(\frac{8}{5}, \frac{7}{3}\right)$ and $\left(\frac{11}{10}, -\frac{14}{9}\right)$. - Example 9: $(7.4, -4.3)$ and $(-2.2, -0.1)$.