# 3.4 - Solving Rational and Radical Equations ## Radical Equations - **Radical Equations**. (These equations involve $\sqrt{\cdots}$ or $\sqrt[n]{\cdots}$) - Basic principle: If $\sqrt{X}=a$, then $X=a^2$. We can see this as 'squaring both sides': if $$\sqrt{X}=a$$ then $$(\sqrt{X})^2=a^2$$ $$X=a^2$$ --- ### Example 1. Solve $\sqrt{3x+1}=4$ #### Solution: Identify what's happening to $x$ according to PEMDAS, then do the opposite things in reverse order. ##### What's happening to $x$? 1. Multiplication by 3 to get $3x$. 2. Addition by 1 to get $3x+1$. 3. Square root to get $\sqrt{3x+1}$. ##### How do we undo this? 1. Square. 2. Subtract by 1. 3. Divide by 3. | Step | Operation | |------------------------------|----------------------------------| | $\sqrt{3x + 1} = 4$ | Original Equation | | $\left(\sqrt{3x + 1}\right)^2 = (4)^2$ | **Square both sides** | | $3x+1 = 16$ | Simplify | | $3x+1-1 = 16-1$ | **Subtract 1 from both sides** | | $3x = 15$ | Simplify | | $\dfrac{3x}{3} = \dfrac{15}{3}$ | **Divide both sides by 3** | | $x = 5$ | Simplify | **Final Answer:** $$x=5$$ **Check $x=5$:** \begin{align} \sqrt{3x+1}&=4 \\ \sqrt{3(5)+1}&=4 \\ \sqrt{15+1}&=4 \\ \sqrt{16}&=4 \\ 4&=4 \quad \checkmark \\ \end{align} --- ### Example 2. Solve $5+\sqrt{x+7}=10$ | Step | Operation | |------------------------------|-------------------------------------| | $5 + \sqrt{x + 7} = 10$ | Original Equation | | $\sqrt{x + 7} = 10 - 5$ | Subtract 5 from both sides | | $\sqrt{x + 7} = 5$ | Simplify | | $\left( \sqrt{x + 7} \right)^2 = 5^2$ | Square both sides | | $x + 7 = 25$ | Simplify | | $x + 7 - 7 = 25 - 7$ | Subtract 7 from both sides | | $x = 18$ | Simplify | **Final Answer:** $$x = 18$$ **Check $x=18$:** \begin{align} 5+\sqrt{x+7}&=10 \\ 5+\sqrt{18+7}&=10 \\ 5+\sqrt{25}&=10 \\ 5+5&=10 \\ 10&=10 \quad \checkmark \\ \end{align} --- - Exception. If $a<0$, you accomplish nothing by squaring both sides, because $\sqrt{X}$ cannot be negative. So if $\sqrt{X}=a<0$, then there is NO SOLUTION for $X$. ### Example 3. Solve $10+\sqrt{2x+5}=6$ #### Step 1: Isolate the square root term Start by isolating the square root on one side of the equation: $$ 10 + \sqrt{2x + 5} = 6 $$ Subtract $10$ from both sides: $$ \sqrt{2x + 5} = 6 - 10 $$ $$ \sqrt{2x + 5} = -4 $$ #### Step 2: Recognize the impossibility The equation $\sqrt{2x + 5} = -4$ is impossible because the square root of any real number is always non-negative (positive or zero), and $-4$ is negative. #### Conclusion: Since the square root cannot be negative, the equation has **no real solution**. ##### Solving the normal way and then checking: \begin{align} 10 + \sqrt{2x + 5} &= 6 \\ \sqrt{2x + 5} &= -4 \\ (\sqrt{2x+5})^2&=(-4)^2 \\ 2x+5&=16 \\ 2x&=11 \\ x&=11/2 \\ x&=5.5 \end{align} **Check $x=5.5$:** \begin{align} 10 + \sqrt{2(5.5) + 5} &= 6 \\ 10 + \sqrt{11 + 5} &= 6 \\ 10 + \sqrt{16} &= 6 \\ 10 + 4 &= 6 \\ 14&=6 \quad \text{ False.}\\ \end{align} $x=5.5$ is not a solution. No solution. ## Rational equations. (These equations involve fractions, or `ratios'.) - Basic principle: Multiply by the least common denominator of the fractions in the equation, which will cancel all denominators, and eliminate fractions. --- ### Example 4. $\displaystyle{\frac{2}{x}+\frac{1}{3}=\frac{1}{4}+\frac{3}{x}}$ The least common denominator is the product of the denominators in this case: $(x)(3)(4)=12x$. Multiply by this: | Equation | Operation | |---------------------------------------------|----------------------------------------------| | $\frac{2}{x} + \frac{1}{3} = \frac{1}{4} + \frac{3}{x}$ | Original Equation | | $12x\left(\frac{2}{x}\right) + 12x\left(\frac{1}{3}\right) = 12x\left(\frac{1}{4}\right) + 12x\left(\frac{3}{x}\right)$ | Multiply both sides by $12x$ | | $12(2) + 4x(1) = 3x(1) + 12(3)$ | Cancel common factors | | $24 + 4x = 3x + 36$ | Simplify | | $24 + x = 36$ | Subtract $3x$ from both sides | | $x = 36 - 24$ | Subtract $24$ from both sides | | $x = 12$ | Simplify | **Final Answer:** $$x = 12$$ --- ### Example 5. Solve $\frac{2}{3}x + \frac{5}{2} = \frac{1}{2}x + 3$ The least common denominator is $(3)(2)=6$: | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{2}{3}x + \frac{5}{2} = \frac{1}{2}x + 3$ | Original Equation | | $6\cdot \frac{2}{3}x + 6\cdot \frac{5}{2} = 6\cdot \frac{1}{2}x + 6\cdot 3$ | Multiply both sides by the least common denominator $6$ | | $4x + 15 = 3x + 18$ | Simplify | | $4x - 3x = 18 - 15$ | Subtract $3x$ from both sides, subtract $15$ from both sides | | $x = 3$ | Simplify | **Final Answer:** $$x = 3$$ --- ### Example 6. Solve $\frac{3}{x-2} = \frac{4}{x+4}$ The least common denominator is $(x-2)(x+4)$, so | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{3}{x-2} = \frac{4}{x+4}$ | Original Equation | | $(x-2)(x+4)\cdot \frac{3}{x-2} = (x-2)(x+4)\cdot \frac{4}{x+4}$ | Multiply both sides by the least common denominator $(x-2)(x+4)$ | | $3(x+4) = 4(x-2)$ | Cancel common factors | | $3x + 12 = 4x - 8$ | Expand both sides | | $12 + 8 = 4x - 3x$ | Move like terms to one side | | $x = 20$ | Simplify | **Final Answer:** $$x = 20$$ --- ### Example 7. Solve $x - \frac{12}{x} = 1$ The least common denominator is $x$, so: | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $x - \frac{12}{x} = 1$ | Original Equation | | $x\left(x - \frac{12}{x}\right) = x(1)$ | Multiply both sides by $x$ (LCD is $x$) | | $x(x) - x\frac{12}{x} = x(1)$ | Distribute $x$ | | $x^2 - 12 = x$ | Cancel common factors | | $x^2 - x - 12 = 0$ | Subtract $x$ from both sides | | $(x - 4)(x + 3) = 0$ | Factor the quadratic | | $x = 4$ or $x = -3$ | Solve each factor | **Final Answer:** $$x = 4 \quad \text{or} \quad x = -3$$ --- ### Example 8. Solve $\frac{4}{2x+1} = \frac{3}{x+3}$ The least common denominator is $(2x+1)(x+3)$. | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{4}{2x+1} = \frac{3}{x+3}$ | Original Equation | | $(2x+1)(x+3)\cdot \frac{4}{2x+1} = (2x+1)(x+3)\cdot \frac{3}{x+3}$ | Multiply both sides by the least common denominator $(2x+1)(x+3)$ | | $4(x+3) = 3(2x+1)$ | Cancel common factors | | $4x + 12 = 6x + 3$ | Expand both sides | | $12 - 3 = 6x - 4x$ | Move like terms to one side | | $9 = 2x$ | Simplify | | $x = \frac{9}{2}$ | Divide by 2 | **Final Answer:** $$x = \frac{9}{2}$$ --- ### Example 9. Solve $\frac{1}{t} + 2 = \frac{3}{2t} - 3$ The least common denominator is $2t$. | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{1}{t} + 2 = \frac{3}{2t} - 3$ | Original Equation | | $2t\left(\frac{1}{t} + 2\right) = 2t\left(\frac{3}{2t} - 3\right)$ | Multiply both sides by the least common denominator $2t$ | |$(2t) \left(\dfrac{1}{t}\right)+(2t)(2)=(2t)\left(\dfrac{3}{2t}\right)+(2t)(-3)$ | Distribute| |$\dfrac{2t}{1} \cdot \dfrac{1}{t}+2t \cdot 2=\dfrac{2t}{1} \cdot \dfrac{3}{2t}+2t(-3)$ | Put $2t$ over 1. | | $2 + 4t = 3 - 6t$ | Simplify | | $4t + 6t = 3 - 2$ | Move like terms to one side | | $10t = 1$ | Simplify | | $t = \frac{1}{10}$ | Divide both sides by 10 | **Final Answer:** $$t = \frac{1}{10}$$ --- ### Example 10. Solve $\frac{1}{x+3} + \frac{2}{x-3} = \frac{4}{x^2-9}$ The least common denominator is $(x+3)(x-3)=x^2-9$.[^1] [^1]: By FOILing:\begin{align}(x+3)(x-3)&=(x)(x)+(x)(-3)+(3)(x)+(3)(-3) \\ &=x^2-3x+3x-9 \\ &=x^2-9 \end{align} | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{1}{x+3} + \frac{2}{x-3} = \frac{4}{x^2-9}$ | Original Equation | | $\frac{1}{x+3} + \frac{2}{x-3} = \frac{4}{(x+3)(x-3)}$ | Factor $x^2-9=(x+3)(x-3)$ | | $(x+3)(x-3)\left(\frac{1}{x+3} + \frac{2}{x-3}\right) = (x+3)(x-3)\cdot \frac{4}{(x+3)(x-3)}$ | Multiply both sides by $x^2 - 9 = (x+3)(x-3)$ | | $(x+3)(x-3)\cdot \dfrac{1}{x+3} + (x+3)(x-3)\cdot \dfrac{2}{x-3} = (x+3)(x-3)\cdot \frac{4}{(x+3)(x-3)}$ | Simplify | | $(x-3) + 2(x+3) = 4$ | Simplify | | $x - 3 + 2x + 6 = 4$ | Expand | | $3x + 3 = 4$ | Simplify | | $3x = 1$ | Subtract 3 from both sides | | $x = \frac{1}{3}$ | Divide by 3 | **Final Answer:** $$x = \frac{1}{3}$$ --- ### Example 11. Solve $\frac{1}{x-2} - \frac{1}{x+2} = \frac{4}{x^2 - 4}$ The least common denominator is $(x+2)(x-2)=x^2-4$.[^2] [^2]: By FOILing:\begin{align}(x+2)(x-2)&=(x)(x)+(x)(-2)+(2)(x)+(2)(-2) \\ &=x^2-2x+2x-4 \\ &=x^2-4 \end{align} Sometimes all the $x$s disappear, as we saw with linear equations: | Equation | Operation | |-------------------------------------------------------------|------------------------------------------| | $\frac{1}{x-2} - \frac{1}{x+2} = \frac{4}{x^2 - 4}$ | Original Equation | | $(x^2-4)\left(\frac{1}{x-2} - \frac{1}{x+2}\right) = (x^2-4)\cdot \frac{4}{x^2 - 4}$ | Multiply both sides by $x^2 - 4 = (x-2)(x+2)$ | | $(x+2) - (x-2) = 4$ | Simplify | | $x + 2 - x + 2 = 4$ | Expand | | $4 = 4$ | Simplify | **Final Answer:** Since we got a true statement, the solution is all real numbers. --- {%youtube fg6r8KfW6Kk %}