# 5.5 - Solving Exponential and Log Equations. ## Solving Exponential Equations - Key new technique: if you have $$a^x=y$$ Then solve for $x$ by using the log: $$x=\log_a(y)$$ ### Example 1. $$2^x=57$$ ::: spoiler <summary> Solution: </summary> \begin{align} 2^x &=57 \\ x&=\log_2(57) \\ x&=\dfrac{\ln 57}{\ln 2} \\ x&\approx 5.83 \end{align} ::: ### Example 2. $$3^t=29$$ ::: spoiler <summary> Solution: </summary> \begin{align} 3^t &= 29 \\ t &= \log_3(29) \\ t &= \dfrac{\ln 29}{\ln 3} \\ t &\approx 3.07 \end{align} ::: ### Example 3. $$5^y=151$$ ::: spoiler <summary> Solution: </summary> \begin{align} 5^y &= 151 \\ y &= \log_5(151) \\ y &= \dfrac{\ln 151}{\ln 5} \\ y &\approx 3.10 \end{align} ::: ### Example 4. $$2^{5y}=67$$ ::: spoiler <summary> Solution: </summary> \begin{align} 2^{5y} &= 67 \\ 5y &= \log_2(67) \\ y &= \dfrac{\ln 67}{5 \ln 2} \\ y &\approx 1.54 \end{align} ::: ### Example 5. $$e^{2t}=5$$ ::: spoiler <summary> Solution: </summary> \begin{align} e^{2t} &= 5 \\ 2t &= \ln(5) \\ t &= \dfrac{\ln 5}{2} \\ t &\approx 0.80 \end{align} ::: ### Example 6. $$e^{0.1t}=124$$ ::: spoiler <summary> Solution: </summary> \begin{align} e^{0.1t} &= 124 \\ 0.1t &= \ln(124) \\ t &= \dfrac{\ln 124}{0.1} \\ t &\approx 43.00 \end{align} ::: ### Example 7. $$7(2^{4x})=151$$ ::: spoiler <summary> Solution: </summary> \begin{align} 7(2^{4x}) &= 151 \\ 2^{4x} &= \dfrac{151}{7} \\ 4x &= \log_2\left(\dfrac{151}{7}\right) \\ 4x &= \dfrac{\ln\left(\dfrac{151}{7}\right)}{ \ln 2} \\ x &= \dfrac{\ln\left(\dfrac{151}{7}\right)}{4 \ln 2} \\ x &\approx 1.88 \end{align} ::: ### Example 8. $$3^{4x-1}=9$$ ::: spoiler <summary> Solution: </summary> \begin{align} 3^{4x-1} &= 9 \\ 3^{4x-1} &= 3^2 \\ 4x-1 &= 2 \\ 4x &= 3 \\ x &= \dfrac{3}{4} \\ x &= 0.75 \end{align} ::: ## Solving Log Equations - Key new technique: if you have $$\log_a(x)=y$$ Then solve for $x$ by using the log: $$a^y=x$$ ### Example 1. $$\log_2(x)=3$$ ::: spoiler <summary> Solution: </summary> \begin{align} \log_2(x)&=3 \\ x&=2^3 \\ x&=8 \end{align} ::: ### Example 2. $$\ln(x)=5$$ ::: spoiler <summary> Solution: </summary> \begin{align} \ln(x) &= 5 \\ \log_e(x)&=5 \\ x &= e^5 \\ x &\approx 148.41 \end{align} ::: ### Example 3. $$\log_3(x)=-2$$ ::: spoiler <summary> Solution: </summary> \begin{align} \log_3(x) &= -2 \\ x &= 3^{-2} \\ x &= \dfrac{1}{9} \end{align} ::: ### Example 4. $$\log_2(2x+1)=4$$ ::: spoiler <summary> Solution: </summary> \begin{align} \log_2(2x+1) &= 4 \\ 2x+1 &= 2^4 \\ 2x+1 &= 16 \\ 2x &= 15 \\ x &= \dfrac{15}{2} \\ x &= 7.5 \end{align} ::: ### Example 5. $$\log_3(x)=2$$ ::: spoiler <summary> Solution: </summary> \begin{align} \log_3(x) &= 2 \\ x &= 3^2 \\ x &= 9 \end{align} ::: ### Example 6. $$\ln(x)=-2$$ ::: spoiler <summary> Solution: </summary> \begin{align} \ln(x) &= -2 \\ \log_e(x)&=-2 \\ x &= e^{-2} \\ x &\approx 0.1353 \end{align} ::: ### Example 7. $$\log_3(3x-2)=2$$ ::: spoiler <summary> Solution: </summary> \begin{align} \log_3(3x-2) &= 2 \\ 3x-2 &= 3^2 \\ 3x-2 &= 9 \\ 3x &= 11 \\ x &= \dfrac{11}{3} \\ x &\approx 3.67 \end{align} :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up