# 5.2 - Exponential Functions and Graphs (J curves) - Graph of $$f(x)=2^x$$ ### Example 1. Graph $f(x)=2^x$ $$ \begin{array}{|c|c|} \hline x & y = f(x) = 2^x \\ \hline 1 & 2^1 = 2 \\ \hline 2 & 2^2 = 4 \\ \hline 3 & 2^3 = 8 \\ \hline 4 & 2^4 = 16 \\ \hline 0 & 2^0 = 1 \\ \hline -1 & 2^{-1} = \frac{1}{2}=0.5 \\ \hline -2 & 2^{-2} = \frac{1}{4}=0.25 \\ \hline -3 & 2^{-3} = \frac{1}{8}=0.125 \\ \hline -4 & 2^{-4} = \frac{1}{16}=0.0625 \\ \hline \end{array} $$  ### Example 2. Graph $f(x)=2^{-x}$ $$ \begin{array}{|c|c|} \hline x & y = f(x) = 2^{-x} = \left(\frac{1}{2}\right)^x \\ \hline 1 & 2^{-1} = \frac{1}{2} \\ \hline 2 & 2^{-2} = \frac{1}{4} \\ \hline 3 & 2^{-3} = \frac{1}{8} \\ \hline 4 & 2^{-4} = \frac{1}{16} \\ \hline 0 & 2^0 = 1 \\ \hline -1 & 2^{1} = 2 \\ \hline -2 & 2^{2} = 4 \\ \hline -3 & 2^{3} = 8 \\ \hline -4 & 2^{4} = 16 \\ \hline \end{array} $$  ### Example 3. Graph both $f(x)=2^x$ and $g(x)=3^x$ $$ \begin{array}{|c|c|c|} \hline x & 2^x & 3^x \\ \hline 1 & 2 & 3 \\ \hline 2 & 4 & 9 \\ \hline 3 & 8 & 27 \\ \hline 4 & 16 & 81 \\ \hline 0 & 1 & 1 \\ \hline -1 & \frac{1}{2} & \frac{1}{3} \\ \hline -2 & \frac{1}{4} & \frac{1}{9} \\ \hline -3 & \frac{1}{8} & \frac{1}{27} \\ \hline -4 & \frac{1}{16} & \frac{1}{81} \\ \hline \end{array} $$  ### Graph $y=-2^x$ $$ \begin{array}{|c|c|} \hline x & y = f(x) = -2^x \\ \hline 1 & -2^1 = -2 \\ \hline 2 & -2^2 = -4 \\ \hline 3 & -2^3 = -8 \\ \hline 4 & -2^4 = -16 \\ \hline 0 & -2^0 = -1 \\ \hline -1 & -2^{-1} = -\frac{1}{2} \\ \hline -2 & -2^{-2} = -\frac{1}{4} \\ \hline -3 & -2^{-3} = -\frac{1}{8} \\ \hline -4 & -2^{-4} = -\frac{1}{16} \\ \hline \end{array} $$  - $f(x)=a^x$ is an **exponential** function. - The value of $a$ is the **base**, $x$ the exponent. - The number $e$ is an important base in science and finance: $$e \approx 2.718281828459 \ldots$$ - Power functions are of the type $x^2, x^3,x^4 \ldots$ - if $x>0$, $$2^x<e^x<3^x<4^x<5^x< \ldots$$ ## Compound interest. Let - $P$ = the initial amount of money in an account (known as the **principal**). - $r$ = the annual **interest rate** as a decimal. - $n$ = the number of times the interest is added ("compounded") per year. - $t$ = the number of years the account runs. - $A$ = the final amount. Then $$A = P \left(1 + \frac{r}{n}\right)^{nt}$$ **Example.** We begin with \$800, and compound it quarterly at an annual rate of 8% for 6 years. What is the final amount? - Quarterly means four times per year. - Convert the interest rate to a decimal by shifting the decimal point 2 places to the left. We have: $$P = 800$$ $$r = 0.08$$ $$n = 4$$ $$t = 6$$ So: $$A = P\left(1 +\dfrac{r}{n}\right)^{nt}$$ $$A = 800\left(1 + \frac{0.08}{4}\right)^{(4)(6)}$$ $$A = 800(1.02)^{24}\approx 1286.75$$ Thus the final amount is $1286.75 --- **Example.** We begin with \$1200, and compound it semi-annually at an annual rate of 6% for $t$ years. What is the final amount? - Semi-annually means two times per year. - Convert the interest rate to a decimal by shifting the decimal point 2 places to the left. We have: $$P = 1200$$ $$r = 0.06$$ $$n = 2$$ $$t = t$$ So: $$A = P\left(1 +\dfrac{r}{n}\right)^{nt}$$ $$A = 1200\left(1 +\dfrac{0.06}{2}\right)^{2t}$$ $$A=1200(1.03)^{2t}$$ 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up