## Introduction to Piecewise Functions A **piecewise function** is a function that is defined by different expressions depending on the value of $x$. When evaluating a piecewise function, there are three key steps: 1. **Identify the given** $x$. 2. **Determine which condition** or inequality applies to $x$. 3. **Plug $x$ into the corresponding expression** based on the condition. ### Step 1: Examples of $f(x)$ Start by plugging in simple values for $x$, but without evaluating yet. For example: | Input | Interpretation | |-------|----------------| | $f(1)$ | $x = 1$ | | $f(3)$ | $x = 3$ | | $f(-2)$ | $x = -2$ | | $f(5)$ | $x = 5$ | --- ### Step 2: Determine which inequality the input $x$ satisfies For each $x$, you will show the inequalities and then check which one it fits. --- #### Example 1: Evaluate $f(3)$ Let’s assume the piecewise function is defined as: $$ f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ 2x - 3 & \text{if } 0 \leq x \leq 3 \\ x + 2 & \text{if } x > 3 \end{cases} $$ | Condition | Inequality | Satisfied? | |----------------------|------------|------------| | $x < 0$ | $3 < 0$ | False | | $0 \leq x \leq 3$ | $0 \leq 3 \leq 3$ | True | | $x > 3$ | $3 > 3$ | False | Since $0 \leq 3 \leq 3$ is **True**, we use the second piece of the function: $2x - 3$. --- #### Example 2: Evaluate $f(1)$ | Condition | Inequality | Satisfied? | |----------------------|------------|------------| | $x < 0$ | $1 < 0$ | False | | $0 \leq x \leq 3$ | $0 \leq 1 \leq 3$ | True | | $x > 3$ | $1 > 3$ | False | Since $0 \leq 1 \leq 3$ is **True**, we use the second piece again: $2x - 3$. --- #### Example 3: Evaluate $f(-2)$ | Condition | Inequality | Satisfied? | |----------------------|------------|------------| | $x < 0$ | $-2 < 0$ | True | | $0 \leq x \leq 3$ | $0 \leq -2 \leq 3$ | False | | $x > 3$ | $-2 > 3$ | False | Since $-2 < 0$ is **True**, we use the first piece: $x^2 + 1$. --- #### Example 4: Evaluate $f(5)$ | Condition | Inequality | Satisfied? | |----------------------|------------|------------| | $x < 0$ | $5 < 0$ | False | | $0 \leq x \leq 3$ | $0 \leq 5 \leq 3$ | False | | $x > 3$ | $5 > 3$ | True | Since $5 > 3$ is **True**, we use the third piece: $x + 2$. --- ### Step 3: Plug the $x$ value into the correct function piece Now that you’ve determined which piece of the function to use, plug the $x$ value into that piece. | Example | Function to Use | Calculation | Result | |----------------|-------------------|------------------------|--------| | $f(3)$ | $2x - 3$ | $2(3) - 3 = 6 - 3$ | $3$ | | $f(1)$ | $2x - 3$ | $2(1) - 3 = 2 - 3$ | $-1$ | | $f(-2)$ | $x^2 + 1$ | $(-2)^2 + 1 = 4 + 1$ | $5$ | | $f(5)$ | $x + 2$ | $5 + 2 = 7$ | $7$ | ## Exercises ### 1. $f(4)$ <details> <summary> Answer: </summary> $f(4)=6$ </details> ### 2. $f(-1)$ <details> <summary> Answer: </summary> $f(-1)=2$ </details> ### 3. $f(2)$ <details> <summary> Answer: </summary> $f(2)=1$ </details>