# 5.3 - Logarithm Functions - The expression $$\log_a(x)=y$$ means $$a^y=x$$. - $\log_a(x)=$'the logarithm of x to base a' or just 'the log of x to base a'. - Typically the log notation is introduced if we want to solve the equation $a^y=x$. Solve $y=\log_a(x)$ and use a calculator to find the logarithm. - The word logarithm comes from a combination of Greek words `logos` (ratio) and `arithmos` (number). - Abbreviations: $\log(x)=\log_{10}(x)$ $\ln(x)=\log_e(x)$ ### Example 1. ::: spoiler <summary> Solution: </summary> ::: ## Examples. Convert to a log equation: $2^x=7$ $4^t=72$ $e^3=x$ $10^4=10000$ $7^y=x$ | # | Exponential Equation | Logarithmic Equation | |----|-----------------------|-----------------------------| | 1 | $2^x = 7$ | $x = \log_2(7)$ | | 2 | $4^t = 72$ | $t = \log_4(72)$ | | 3 | $e^3 = x$ | $3 = \ln(x)$ | | 4 | $10^4 = 10000$ | $4 = \log_{10}(10000)$ | | 5 | $7^y = x$ | $y = \log_7(x)$ | Convert to an exponential equation: $\log_4(16)=2$ $\log_3(x)=3$ $\log (.00001)=-5$ $\log_2(7)=r$ $\ln(5)=-y$ | # | Logarithmic Equation | Exponential Equation | |----|------------------------|-----------------------------| | 1 | $\log_4(16) = 2$ | $4^2 = 16$ | | 2 | $\log_3(x) = 3$ | $3^3 = x$ | | 3 | $\log (0.00001) = -5$ | $10^{-5} = 0.00001$ | | 4 | $\log_2(7) = r$ | $2^r = 7$ | | 5 | $\ln(5) = -y$ | $e^{-y} = 5$ | Evaluate. (Let $x=$ the answer and convert to an exponential equation to find $x$.) $\log_2(16)=$ $\log_3(27)=$ $\log_3(\frac{1}{3})=$ $\log_4(\frac{1}{16})=$ $\log_7(1)=$ $\log_{10}(.001)=$ $\log_3(\sqrt{3})=$ $\log_5(5^7)=$ $\ln(e^6)=$ $\log_4(0)=$ $\log_2(-4)=$ $\log_4(16)=$ $\log_5(\frac{1}{25})$ $\log_6(0)=$ $\log_{10}(.0000001)=$ $\log_5(-25)=$ $\log_7(7^4)=$ $\ln(1)=$ $\log_6(-1)=$ $\log_{10}(.00001)=$ $\log_6(\sqrt{6})=$ | # | Logarithmic Equation | Exponential Equation | Answer ($x$) | |----|------------------------------------|-----------------------------|--------------| | 1 | $\log_2(16) = x$ | $2^x = 16$ | $x = 4$ | | 2 | $\log_3(27) = x$ | $3^x = 27$ | $x = 3$ | | 3 | $\log_3\left(\frac{1}{3}\right) = x$| $3^x = \frac{1}{3}$ | $x = -1$ | | 4 | $\log_4\left(\frac{1}{16}\right) = x$| $4^x = \frac{1}{16}$ | $x = -2$ | | 5 | $\log_7(1) = x$ | $7^x = 1$ | $x = 0$ | | 6 | $\log_{10}(0.001) = x$ | $10^x = 0.001$ | $x = -3$ | | 7 | $\log_3(\sqrt{3}) = x$ | $3^x = \sqrt{3}$ | $x = \frac{1}{2}$ | | 8 | $\log_5(5^7) = x$ | $5^x = 5^7$ | $x = 7$ | | 9 | $\ln(e^6) = x$ | $e^x = e^6$ | $x = 6$ | | 10 | $\log_4(0) = x$ | N/A (undefined) | undefined | | 11 | $\log_2(-4) = x$ | N/A (undefined for negative)| undefined | | 12 | $\log_4(16) = x$ | $4^x = 16$ | $x = 2$ | | 13 | $\log_5\left(\frac{1}{25}\right) = x$| $5^x = \frac{1}{25}$ | $x = -2$ | | 14 | $\log_6(0) = x$ | N/A (undefined) | undefined | | 15 | $\log_{10}(0.0000001) = x$ | $10^x = 0.0000001$ | $x = -7$ | | 16 | $\log_5(-25) = x$ | N/A (undefined for negative)| undefined | | 17 | $\log_7(7^4) = x$ | $7^x = 7^4$ | $x = 4$ | | 18 | $\ln(1) = x$ | $e^x = 1$ | $x = 0$ | | 19 | $\log_6(-1) = x$ | N/A (undefined for negative)| undefined | | 20 | $\log_{10}(0.00001) = x$ | $10^x = 0.00001$ | $x = -5$ | | 21 | $\log_6(\sqrt{6}) = x$ | $6^x = \sqrt{6}$ | $x = \frac{1}{2}$ | ### Graph of $y=\log_2(x)$ | $x$ | Work | $y = f(x) = \log_2(x)$ | |------------------|----------------------------------------------|------------------------| | $2$ | $2^y = 2 \implies y = 1$ | $1$ | | $4$ | $2^y = 4 \implies 2^2 = 4 \implies y = 2$ | $2$ | | $8$ | $2^y = 8 \implies 2^3 = 8 \implies y = 3$ | $3$ | | $1$ | $2^y = 1 \implies 2^0 = 1 \implies y = 0$ | $0$ | | $\frac{1}{2}$ | $2^y = \frac{1}{2} \implies 2^{-1} = \frac{1}{2} \implies y = -1$ | $-1$ | | $\frac{1}{4}$ | $2^y = \frac{1}{4} \implies 2^{-2} = \frac{1}{4} \implies y = -2$ | $-2$ | | $\frac{1}{8}$ | $2^y = \frac{1}{8} \implies 2^{-3} = \frac{1}{8} \implies y = -3$ | $-3$ | | $\frac{1}{16}$ | $2^y = \frac{1}{16} \implies 2^{-4} = \frac{1}{16} \implies y = -4$ | $-4$ | | $0$ | $\log_2(0)$ is undefined | Undefined | | $-2$ | $\log_2(-2)$ is undefined | Undefined | | $-4$ | $\log_2(-4)$ is undefined | Undefined | Graph of $y=\log_2(x)$ ![{F6989490-2527-4593-824F-AD91DEDC0844}](https://hackmd.io/_uploads/H1VDPSNAR.png)