# 3.2 - Quadratic equations and functions. - Quadratic functions: $3x^2 - 2x + 4$ $-4x^2 + 3x + 1$ $5x^2 - 2x$ (this is $5x^2 - 2x + 0$) $-2x^2 + 4$ (this is $-2x^2 + 0x + 4$) What about these? Yes or no? $7x^2$ $\sqrt{3}x^2 - 2x + 4$ $2x$ $5$ - Quadratic function: $f(x) = ax^2 + bx + c$. $a \neq 0$. - Quadratic equation: $ax^2 + bx + c = 0$. $a \neq 0$. ## Method of solution of $ax^2 + bx + c = 0$: Factoring. - Try to write $ax^2 + bx + c$ as the product of linear factors by doing some guesswork. - If $AB = 0$ then $A = 0$ or $B = 0$. ### Example 1. Solve $(3x-7)(5x+9)=0$ Think of $A=3x-7$ and $B=5x+9$. | Step | Solve $A = 0$ | Solve $B = 0$ | |-----------------------------|-----------------------------------|-------------------------------------| | Set equation to zero | $3x - 7 = 0$ | $5x + 9 = 0$ | | Isolate $x$ | $3x = 7$ | $5x = -9$ | | Solve for $x$ | $x = \frac{7}{3}$ | $x = -\frac{9}{5}$ | Solution: $x = \frac{7}{3}$ or $x = -\frac{9}{5}$. --- ### Example 2. Solve $x^2 - 36 = 0$ Write $x^2 - 36$ as a difference of squares: $x^2-36=(x+6)(x-6)$ Click on footnote for FOIL verification:[^1] [^1]: \begin{align} (x+6)(x-6)&=(x)(x)+(x)(-6)+(6)(x)+(6)(-6) \\ &=x^2-6x+6x-36 \\ &=x^2-36 \end{align} $$(x+6)(x-6)=0$$ Think of $A=x+6$ and $B=x-6$. | Step | Solve $A=0$ | Solve $B=0$ | |-----------------------------|--------------------------------------------|----| | Set equation to zero | $x+6=0$ | $x-6=0$ | | Isolate $x$ | $x=-6$ | $x=6$ | Solution: $x = 6$ or $x = -6$. - Typically get two solutions, unless the factors are the same. --- ### Example 3. $x^2+7x+12=0$ If $$x^2+7x+12=(x+A)(x+B)$$ \begin{align} (x+A)(x+B)&=(x)(x)+(x)(B)+(A)(x)+(A)(B) \\ &=x^2+Bx+Ax+AB \\ &=x^2+(Ax+Bx)+(AB) \\ &=x^2+ \hspace{0.3cm} \quad 7x \hspace{0.9cm} \quad+12 \end{align} then when we multiply out (FOIL) $AB$ must be $12$ and $Ax+Bx$ must be $7x$. So we seek $A,B$ so that $A+B=7$ and $AB=12$. Possibilities for $(A,B)$ multiplying to $12$ include pairs in this table: | A | B | AB | |---|----|---| | 1 | 12 | 12 | | 2 | 6 | 12 | | 3 | 4 | 12| Then add another column $A+B$ by adding the columns $A$ and $B$: | A | B | A+B | AB | |---|----|-----|----| | 1 | 12 | 13 |12| | 2 | 6 | 8 |12| | **3** | **4** | **7** |**12**| that $3+4=7$ and $(3)(4)=12$ so $$x^2+7x+12=(x+3)(x+4)$$ Check the footnote for FOIL verification:[^2] [^2]: \begin{align} (x+3)(x+4)&=(x)(x)+(x)(4)+(3)(x)+(3)(4) \\ &=x^2+4x+3x+12 \\ &=x^2+7x+12 \end{align} Solve: $$(x+3)(x+4)=0$$ \begin{align} x+3&=0 & x+4&=0 \\ x&=-3 & x&=-4 \end{align} - Guesswork is the basis of factoring - although there are some tricks to speed up the process. --- ### Example 4. $2x^2+4x-16=0$ - First notice $2$ divides every term. Factor it out: $$2x^2+4x-16=2(x^2+2x-8)=2(x+A)(x+B)$$ Now we need $A,B$ so $AB=-8$ and $A+B=2$. Since the product is negative, one of $A,B$ is negative and one positive. So really we will have a difference of two numbers equal to $2$. Possibilities for $(A,B)$ include: $(1,-8)$, $(8,-1)$, $(-1,8)$, $(-8,1)$, $(4,-2)$, $(-4,2)$, $(2,-4)$, $(-2,4)$, etc. Since $4+(-2)=2$, $A=4$ and $B=-2$. So $$2x^2+4x-16=2(x^2+2x-8)=2(x+4)(x-2)=0$$ \begin{align} x+4&=0 & x-2&=0 \\ x&=-4 & x&=2 \end{align} --- ### Example 5. $3x^2-33=0$ We could write $$3x^2-33=3(x^2-11)=3(x+A)(x+B).$$ If we write $11$ as $(\sqrt{11})^2$, then we can factor as the difference of two squares. But that is a little messy and there is another way of thinking of this: - Because there is no $x$ term, we can isolate $x^2$ as in a linear equation: $$3x^2=33$$ $$x^2=\frac{33}{3}=11$$ Here we use the `principle of square roots': we have $x=\sqrt{11}$ or $x=-\sqrt{11}$. This is usually better than factoring. - Usually write $x=\pm\sqrt{11}$ - Don't forget the solution can be plus or minus! --- ### Example 6. $7x^2+42=0$ Then $$7x^2=-42,$$ $$x^2=-\frac{42}{7},$$ $$x^2=-6.$$ If $x$ is real then $x^2$ cannot be negative, so for real numbers there is NO REAL SOLUTION. - But usually we don't express it this way: we introduce the `imaginary' number $i$ which satisfies $i^2=-1$. - Then the solution is written $$x=\pm\sqrt{6}i$$ We don't emphasize imaginary numbers in this course, but since most books talk a little about them, this is how answers are written. But it is still the case that there is no REAL solution. --- ### Example 7. $27x=9x^2$ - Always create an equation which is set equal to ZERO: $$-9x^2+27x=0$$ - It's best if the $x^2$ has a positive coefficient. Multiply by $-1$: $$9x^2-27x=0$$ Here both terms have $x$ in them. So factor it out, along with $9$: $$9x(x-3)=0$$ Then $9x=0$ or $x-3=0$ so $x=\frac{0}{9}=0$ or $x=3$. --- ### Example 8. $x^2-4x-21=0$ #### Steps to Factor $x^2 - 4x - 21$ #### Step 1: Identify the constant term and the middle term - The constant term is $-21$ (the number without $x$). - The middle term is $-4x$ (the coefficient of $x$ is $-4$). #### Step 2: Find two numbers that multiply to $-21$ and add to $-4$ We need to find two numbers that: - **Multiply** to $-21$ (constant term). - **Add** to $-4$ (middle term). #### Step 3: List the factor pairs of $-21$ and check their sums #### Factor Pairs of -21 and Their Sums | Factor 1 | Factor 2 | Sum | |----------|----------|------| | 1 | -21 | -20 | | -1 | 21 | 20 | | 3 | -7 | **-4** | | -3 | 7 | 4 | #### Step 4: Select the correct factor pair The correct factor pair is $3$ and $-7$, since: - $3 \times -7 = -21$ - $3 + (-7) = -4$ #### Step 5: Write the factored form Now that we have the correct factor pair, we can write the quadratic expression in its factored form: $$ x^2 - 4x - 21 = (x + 3)(x - 7) $$ #### Step 6: Solve for $x$ To solve the equation $(x+3)(x-7) = 0$, we set each factor to zero: $$ x + 3 = 0 \quad \text{or} \quad x - 7 = 0 $$ Thus, the solutions are: $$ x = -3 \quad \text{or} \quad x = 7 $$ #### Final Answer The factored form of $x^2 - 4x - 21$ is $(x + 3)(x - 7)$, and the solutions are $x = -3$ and $x = 7$. --- ### Example 9. $x^2-8x+12=0$ #### Steps to Factor $x^2 - 8x + 12$ #### Step 1: Identify the constant term and the middle term - The constant term is $12$ (the number without $x$). - The middle term is $-8x$ (the coefficient of $x$ is $-8$). #### Step 2: Find two numbers that multiply to $12$ and add to $-8$ We need to find two numbers that: - **Multiply** to $12$ (constant term). - **Add** to $-8$ (middle term). #### Step 3: List the factor pairs of $12$ and check their sums #### Factor Pairs of 12 and Their Sums | Factor 1 | Factor 2 | Sum | |----------|----------|------| | 1 | 12 | 13 | | -1 | -12 | -13 | | 2 | 6 | 8 | | **-2** | **-6** | **-8** | | 3 | 4 | 7 | | -3 | -4 | -7 | #### Step 4: Select the correct factor pair The correct factor pair is $-2$ and $-6$, since: - $-2 \times -6 = 12$ - $-2 + (-6) = -8$ #### Step 5: Write the factored form Now that we have the correct factor pair, we can write the quadratic expression in its factored form: $$ x^2 - 8x + 12 = (x - 6)(x - 2) $$ #### Step 6: Solve for $x$ To solve the equation $(x-6)(x-2) = 0$, we set each factor to zero: $$ x - 6 = 0 \quad \text{or} \quad x - 2 = 0 $$ Thus, the solutions are: $$ x = 6 \quad \text{or} \quad x = 2 $$ #### Final Answer The factored form of $x^2 - 8x + 12$ is $(x - 6)(x - 2)$, and the solutions are $x = 6$ and $x = 2$. --- ### Example 10. $7x^2+22x+3=0$ $$(7x+\dots)(x+\dots)=0$$ #### Easiest Way to Factor $7x^2 + 22x + 3$ #### Step 1: Factor $7x^2$ and $3$ - $7x^2$ factors as $(7x)(x)$. - $3$ can factor as $(1)(3)$, $(3)(1)$, $(-1)(-3)$, or $(-3)(-1)$. #### Step 2: Check possible pairings 1. **First pairing**: $(7x + 1)(x + 3)$ Expand: $$ (7x + 1)(x + 3) = 7x^2 + 22x + 3 $$ This matches the original equation. 2. **Second pairing**: $(7x + 3)(x + 1)$ Expand: $$ (7x + 3)(x + 1) =7x^2 + 10x + 3 $$ This does not match. 3. **Third pairing**: $(7x - 1)(x - 3)$ Expand: $$ (7x - 1)(x - 3) = 7x^2 - 22x + 3 $$ This doesn't match because it gives $-22x$, which is the opposite sign. 4. **Third pairing**: $(7x - 3)(x - 1)$ Expand: $$ (7x - 3)(x - 1) = 7x^2 - 10x + 3 $$ This does not match. #### Step 3: Conclusion The correct factorization is: $$ (7x + 1)(x + 3) $$ #### Step 4: Solve for $x$ Set each factor to zero: $$ 7x + 1 = 0 \quad \text{or} \quad x + 3 = 0 $$ Thus, the solutions are: $$ x = -\frac{1}{7} \quad \text{or} \quad x = -3 $$ #### Final Answer The factored form of $7x^2 + 22x + 3$ is $(7x + 1)(x + 3)$, and the solutions are $x = -\frac{1}{7}$ and $x = -3$. --- ### Example 11. $y^3-5y^2-24y=0$ #### Steps to Factor $y^3 - 5y^2 - 24y$ #### Step 1: Factor out the greatest common factor The greatest common factor (GCF) of all the terms is $y$, so we factor that out first: $$ y^3 - 5y^2 - 24y = y(y^2 - 5y - 24) $$ Now we need to factor $y^2 - 5y - 24$. #### Step 2: Identify the constant term and the middle term - The constant term is $-24$. - The middle term is $-5y$. #### Step 3: Find two numbers that multiply to $-24$ and add to $-5$ We need to find two numbers that: - **Multiply** to $-24$ (constant term). - **Add** to $-5$ (middle term). #### Step 4: List the factor pairs of $-24$ and check their sums #### Factor Pairs of -24 and Their Sums | Factor 1 | Factor 2 | Sum | |----------|----------|------| | 1 | -24 | -23 | | -1 | 24 | 23 | | 2 | -12 | -10 | | -2 | 12 | 10 | | **3** | **-8** | **-5** | | -3 | 8 | 5 | #### Step 5: Select the correct factor pair The correct factor pair is $3$ and $-8$, since: - $3 \times -8 = -24$ - $3 + (-8) = -5$ #### Step 6: Write the factored form Now that we have the correct factor pair, we can write the quadratic expression in its factored form: $$ y^2 - 5y - 24 = (y + 3)(y - 8) $$ Thus, the full factored form of the original expression is: $$ y(y + 3)(y - 8) = 0 $$ #### Step 7: Solve for $y$ Set each factor to zero: $$ y = 0 \quad \text{or} \quad y + 3 = 0 \quad \text{or} \quad y - 8 = 0 $$ Thus, the solutions are: $$ y = 0 \quad \text{or} \quad y = -3 \quad \text{or} \quad y = 8 $$ #### Final Answer The factored form of $y^3 - 5y^2 - 24y$ is $y(y + 3)(y - 8)$, and the solutions are $y = 0$, $y = -3$, and $y = 8$. --- ### Example 12. $y^4-8y^2+15=0$ $$(y^2+\dots)(y^2+\dots)=0$$ #### Steps to Factor $y^4 - 8y^2 + 15$ #### Step 1: Recognize the structure This is a quadratic in terms of $y^2$. Let’s rewrite it as: $$ (y^2)^2 - 8y^2 + 15 = 0 $$ Now we will factor it like a regular quadratic. #### Step 2: Identify the constant term and the middle term - The constant term is $15$. - The middle term is $-8y^2$. #### Step 3: Find two numbers that multiply to $15$ and add to $-8$ We need to find two numbers that: - **Multiply** to $15$ (constant term). - **Add** to $-8$ (middle term). #### Step 4: List the factor pairs of $15$ and check their sums #### Factor Pairs of 15 and Their Sums | Factor 1 | Factor 2 | Sum | |----------|----------|------| | 1 | 15 | 16 | | -1 | -15 | -16 | | 3 | 5 | 8 | | **-3** | **-5** | **-8** | #### Step 5: Select the correct factor pair The correct factor pair is $-3$ and $-5$, since: - $-3 \times -5 = 15$ - $-3 + (-5) = -8$ #### Step 6: Write the factored form Now that we have the correct factor pair, we can write the quadratic expression in its factored form: $$ y^4 - 8y^2 + 15 = (y^2 - 3)(y^2 - 5) $$ #### Step 7: Solve for $y^2$ We now set each factor to zero: $$ y^2 - 3 = 0 \quad \text{or} \quad y^2 - 5 = 0 $$ Solving these gives: $$ y^2 = 3 \quad \text{or} \quad y^2 = 5 $$ #### Step 8: Solve for $y$ Now, take the square root of both sides: $$ y = \pm \sqrt{3} \quad \text{or} \quad y = \pm \sqrt{5} $$ #### Final Answer The factored form of $y^4 - 8y^2 + 15$ is $(y^2 - 3)(y^2 - 5)$, and the solutions are: $$ y = \pm \sqrt{3} \quad \text{and} \quad y = \pm \sqrt{5} $$ --- ## Graph of $f(x)=ax^2+bx+c$. - Is always a `parabola' - a U shape if $a>0$. ![image](https://hackmd.io/_uploads/r1-H4jmCC.png) - Upside down U if $a<0$. ![{570E72A7-2BB3-48D2-8066-E0B5715B29FB}](https://hackmd.io/_uploads/rJXLNiXC0.png) --- - `Zeroes' of $f(x)$ are the solutions to $ax^2+bx+c=0$. Example. Find the $x$-intercepts of $f(x)=-x^2+8x-7=0$. ### Steps to Find the $x$-Intercepts #### Step 1: Identify the equation and rearrange if necessary We are given the equation: $$ -x^2 + 8x - 7 = 0 $$ To make factoring easier, multiply both sides by $-1$ to get: $$ x^2 - 8x + 7 = 0 $$ #### Step 2: Identify the constant term and the middle term - The constant term is $7$. - The middle term is $-8x$. #### Step 3: Find two numbers that multiply to $7$ and add to $-8$ We need to find two numbers that: - **Multiply** to $7$ (constant term). - **Add** to $-8$ (middle term). #### Step 4: List the factor pairs of $7$ and check their sums #### Factor Pairs of 7 and Their Sums | Factor 1 | Factor 2 | Sum | |----------|----------|------| | 1 | 7 | 8 | | **-1** | **-7** | **-8** | #### Step 5: Select the correct factor pair The correct factor pair is $-1$ and $-7$, since: - $-1 \times -7 = 7$ - $-1 + (-7) = -8$ #### Step 6: Write the factored form Now that we have the correct factor pair, we can write the quadratic expression in its factored form: $$ x^2 - 8x + 7 = (x - 1)(x - 7) $$ #### Step 7: Solve for $x$ To find the $x$-intercepts, set each factor to zero: $$ x - 1 = 0 \quad \text{or} \quad x - 7 = 0 $$ Thus, the solutions are: $$ x = 1 \quad \text{or} \quad x = 7 $$ #### Final Answer The $x$-intercepts of $f(x) = -x^2 + 8x - 7$ are the points: $$ (1,0) \quad \text{and} \quad (7,0) $$ ![{9AA11159-3451-4F2B-B168-F6DFD015220F}](https://hackmd.io/_uploads/HJYCKimRC.png) ## JIT 22. Radical Expressions. $$\sqrt{ab}=\sqrt{a}\sqrt{b}$$ $$\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}$$ - Some square roots have whole number answers, when the numbers involve perfect squares: $\sqrt{36}=6$ $\sqrt{100}=10$ $\sqrt{81}=9$ $\sqrt{\dfrac{9}{25}}=\dfrac{\sqrt{9}}{\sqrt{25}}=\dfrac{3}{5}$ $\sqrt{\dfrac{49}{36}}=\dfrac{\sqrt{49}}{\sqrt{36}}=\dfrac{7}{6}$ - Sometimes only certain factors of the square root involve perfect squares: Examples. $\sqrt{12}=\sqrt{4}\sqrt{3}=2\sqrt{3}$ $\sqrt{18}=\sqrt{9}\sqrt{2}=3\sqrt{2}$ $\sqrt{48}=\sqrt{16}\sqrt{3}=4\sqrt{3}$ $\sqrt{54}=\sqrt{9}\sqrt{6}=3\sqrt{6}$ $\sqrt{40}=\sqrt{4}\sqrt{10}=2\sqrt{10}$ $\sqrt{60}=\sqrt{4}\sqrt{15}=2\sqrt{15}$ $\sqrt{98}=\sqrt{49}\sqrt{2}=7\sqrt{2}$ ## Quadratic Formula - Sometimes quadratics are too difficult to factor. - Then $ax^2 + bx + c = 0$ can be solved with the quadratic formula: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ --- ### Example 13. $x^2 + x - 7 = 0$ - No nice and easy way to factor. $$ a = 1, \, b = 1, \, c = -7 $$ \begin{align*} x &= \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-7)}}{2(1)} \\ x &= \frac{-1 \pm \sqrt{1 + 28}}{2} \\ x &= \frac{-1 \pm \sqrt{29}}{2} \end{align*} The two solutions are $x=-\dfrac{1}{2} + \dfrac{\sqrt{29}}{2}$ and $x=-\dfrac{1}{2} - \dfrac{\sqrt{29}}{2}$ --- ### Example 14. Given the equation: $$x^2 + 3x + 1 = 0$$ Using the quadratic formula: $$ a = 1, \, b = 3, \, c = 1 $$ \begin{align*} x &= \frac{-3 \pm \sqrt{(3)^2 - 4(1)(1)}}{2(1)} \\ x &= \frac{-3 \pm \sqrt{9 - 4}}{2} \\ x &= \frac{-3 \pm \sqrt{5}}{2} \end{align*} The two solutions are $x=-\dfrac{3}{2} + \dfrac{\sqrt{5}}{2}$ and $x=-\dfrac{3}{2} - \dfrac{\sqrt{5}}{2}$ --- - Sometimes we have no REAL solutions - if we have a square root of a negative. - We write $i=\sqrt{-1}$. --- ### Example 15 $x^2-x+5=0$ $$a=1, b=-1, c=5$$ $$x=\frac{-(-1)\pm\sqrt{(-1)^2-4(1)(5)}}{2(1)}$$ $$x=\frac{1\pm\sqrt{1-20}}{2}$$ $$x=\frac{1\pm\sqrt{-19}}{2}$$ $$x=\frac{1\pm\sqrt{19}\sqrt{-1}}{2}$$ $$x=\frac{1\pm\sqrt{19}i}{2}$$ The two solutions are $x=\dfrac{1}{2} + \dfrac{\sqrt{19}}{2}i$ and $x=\dfrac{1}{2} - \dfrac{\sqrt{19}}{2}i$. - We still say there are no REAL solutions. - In this case the graph of $y=ax^2+bx+c$ has no (real) $x$ intercepts. --- - Sometimes we have some simplification to do: --- ### Example 16 $2x^2+2x-5=0$ $$a=2, b=2, c=-5$$ $$x=\frac{-2\pm\sqrt{2^2-4(2)(-5)}}{2(2)}$$ $$x=\frac{-2\pm\sqrt{4+40}}{4}$$ $$x=\frac{-2\pm\sqrt{44}}{4}$$ Here, $\sqrt{44}$ can be simplified as $\sqrt{(4)(11)}=\sqrt{4}\sqrt{11}=2\sqrt{11}$: $$x=\frac{-2\pm 2\sqrt{11}}{4}$$ $$x=\frac{-2}{4} \pm \dfrac{2\sqrt{11}}{4}$$ $$x=-\frac{1}{2} \pm \dfrac{\sqrt{11}}{2}$$ The two solutions are $x=-\dfrac{1}{2} + \dfrac{\sqrt{11}}{2}i$ and $x=-\dfrac{1}{2} - \dfrac{\sqrt{11}}{2}i$. --- ### Example 17. $3x^2+2x-3=0$ #### Step 1: Identify the coefficients For the quadratic equation $3x^2 + 2x - 3 = 0$, we have: $$ a = 3, \, b = 2, \, c = -3 $$ #### Step 2: Use the quadratic formula The quadratic formula is: $$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ Substitute the values of $a$, $b$, and $c$: $$ x = \frac{-2 \pm \sqrt{2^2 - 4(3)(-3)}}{2(3)} $$ #### Step 3: Simplify under the square root $$ x = \frac{-2 \pm \sqrt{4 + 36}}{6} $$ $$ x = \frac{-2 \pm \sqrt{40}}{6} $$ #### Step 4: Simplify the square root We can simplify $\sqrt{40}$ as: $$ \sqrt{40} = \sqrt{(4)(10)} = \sqrt{4} \times \sqrt{10} = 2\sqrt{10} $$ Thus, we have: $$ x = \frac{-2 \pm 2\sqrt{10}}{6}=\dfrac{-2}{6} \pm \dfrac{2\sqrt{10}}{6}=-\dfrac{1}{3} \pm \dfrac{\sqrt{10}}{3} $$ #### Final Answer: The solutions are: $$ x = -\dfrac{1}{3} + \dfrac{\sqrt{10}}{3} \quad \text{or} \quad -\dfrac{1}{3} - \dfrac{\sqrt{10}}{3} $$ --- ### Example 18. $5x^2+2x=1$ #### Step 1: Rearrange the equation Move the $1$ to the left-hand side to set the equation equal to $0$: $$ 5x^2 + 2x - 1 = 0 $$ #### Step 2: Identify the coefficients For the quadratic equation $5x^2 + 2x - 1 = 0$, we have: $$ a = 5, \, b = 2, \, c = -1 $$ #### Step 3: Use the quadratic formula The quadratic formula is: $$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ Substitute the values of $a$, $b$, and $c$: $$ x = \frac{-2 \pm \sqrt{2^2 - 4(5)(-1)}}{2(5)} $$ #### Step 4: Simplify under the square root $$ x = \frac{-2 \pm \sqrt{4 + 20}}{10} $$ $$ x = \frac{-2 \pm \sqrt{24}}{10} $$ #### Step 5: Simplify the square root We can simplify $\sqrt{24}$ as: $$ \sqrt{24} = \sqrt{(4)(6)} = \sqrt{4} \times \sqrt{6} = 2\sqrt{6} $$ Thus, we have: $$ x = \frac{-2 \pm 2\sqrt{6}}{10}=\dfrac{-2}{10} \pm \dfrac{2\sqrt{6}}{10}=-\dfrac{1}{5} \pm \dfrac{\sqrt{6}}{5} $$ ### Final Answer: The solutions are: $$ x = -\dfrac{1}{5} + \dfrac{\sqrt{6}}{5} \quad \text{or} \quad x = -\dfrac{1}{5} - \dfrac{\sqrt{6}}{5} $$