# Page 41
## 1. $$8-6x=13$$
<details> <summary> Example: </summary>
$$
5-7x=14
$$
Subtract 5 from both sides:
$$
-7x=14-5
$$
Simplify:
$$
-7x=9
$$
Divide both sides by -7:
$$
x=\frac{9}{-7}
$$
Simplify:
$$
x=-\frac{9}{7}
$$
</details>
## 2. $$9+3x=7-5x$$
<details> <summary> Example: </summary>
$$
7+2x=8-4x
$$
Add 4x to both sides:
$$
7+2x+4x=8
$$
Simplify:
$$
7+6x=8
$$
Subtract 7 from both sides:
$$
6x=8-7
$$
Simplify:
$$
6x=1
$$
Divide both sides by 6:
$$
x=\frac{1}{6}
$$
</details>
## 3. $$4+3(2x-1)=14$$
<details> <summary> Example: </summary>
$$
5+2(3x-1)=16
$$
First, distribute the 2 on the left side:
$$
5+6x-2=16
$$
Simplify:
$$
3+6x=16
$$
Subtract 3 from both sides:
$$
6x=16-3
$$
Simplify:
$$
6x=13
$$
Divide both sides by 6:
$$
x=\frac{13}{6}
$$
</details>
## 4. $$3+2(x-1)=4+3(x+1)-x$$
<details> <summary> Example: </summary>
To solve the equation:
$$2+3(x-4)=5+4(x+3)-x$$
First, distribute on both sides:
$$2+3x-12=5+4x+12-x$$
Simplify both sides:
$$3x-10=4x+17-x$$
Combine like terms:
$$3x-10=3x+17$$
Subtract $3x$ from both sides:
$$-10=17$$
Since this is a contradiction, the equation has no solution.
Thus, the solution is:
$$\text{No solution}$$
</details>
# Page 42
## 1. $$3(y-2)+7=6(2y-2)$$
<details> <summary> Example: </summary>
$$
4(y-3)+6=5(3y-2)
$$
First, distribute both sides:
$$
4y-12+6=15y-10
$$
Simplify:
$$
4y-6=15y-10
$$
Add 6 to both sides:
$$
4y=15y-4
$$
Subtract 15y from both sides:
$$
4y-15y=-4
$$
Simplify:
$$
-11y=-4
$$
Divide both sides by -11:
$$
y=\frac{-4}{-11}
$$
Simplify:
$$
y=\frac{4}{11}
$$
</details>
## 2. $$2(2t-3)+4t=8t-6$$
<details> <summary> Example: </summary>
$$
3(4t-5)+2t=14t-15
$$
First, distribute the 3 on the left side:
$$
12t-15+2t=14t-15
$$
Combine like terms on the left side:
$$
14t-15=14t-15
$$
Since both sides are identical, this equation is true for all values of \( t \). Thus, the solution is:
$$
t \in \mathbb{R}
$$
Or simply:
$$
\text{All real numbers.}
$$
</details>
## 3. $$\dfrac{1}{2}x+5=\dfrac{1}{3}x-\dfrac{7}{2}$$
<details> <summary> Example: </summary>
To solve the equation:
$$\dfrac{1}{3}x+6=\dfrac{1}{4}x-\dfrac{9}{2}$$
First, move all the $x$ terms to the left side and constants to the right side. Subtract $\dfrac{1}{4}x$ from both sides:
$$\dfrac{1}{3}x-\dfrac{1}{4}x+6=-\dfrac{9}{2}$$
Now, combine the $x$ terms. The common denominator for $\dfrac{1}{3}$ and $\dfrac{1}{4}$ is 12, so rewrite both fractions:
$$\dfrac{4}{12}x-\dfrac{3}{12}x+6=-\dfrac{9}{2}$$
Simplify:
$$\dfrac{1}{12}x+6=-\dfrac{9}{2}$$
Next, subtract 6 from both sides:
$$\dfrac{1}{12}x=-\dfrac{9}{2}-6$$
Rewrite 6 as $\dfrac{12}{2}$:
$$\dfrac{1}{12}x=-\dfrac{9}{2}-\dfrac{12}{2}$$
Simplify:
$$\dfrac{1}{12}x=-\dfrac{21}{2}$$
Now, divide both sides by $\dfrac{1}{12}$, which is the same as multiplying by 12 (keep, change, flip):
$$x=-\dfrac{21}{2} \times 12$$
Simplify:
$$x=-\dfrac{252}{2}$$
$$x=-126$$
Thus, the solution is:
$$x=-126$$
</details>
# Page 43
## 1. Find the zeroes of $$f(x)=\dfrac{5}{6}x+\dfrac{3}{4}$$
<details> <summary> Example: </summary>
To find the zeroes of the function:
$$
f(x)=\dfrac{4}{3}x+\dfrac{2}{5}
$$
Set $f(x) = 0$:
$$
0 = \dfrac{4}{3}x + \dfrac{2}{5}
$$
Subtract $\dfrac{2}{5}$ from both sides:
$$
-\dfrac{2}{5} = \dfrac{4}{3}x
$$
Multiply both sides by the reciprocal of $\dfrac{4}{3}$, which is $\dfrac{3}{4}$:
$$
x = -\dfrac{2}{5} \times \dfrac{3}{4}
$$
Multiply the fractions:
$$
x = -\dfrac{6}{20}
$$
Simplify:
$$
x = -\dfrac{3}{10}
$$
Thus, the zero of the function is:
$$
x = -\dfrac{3}{10}
$$
</details>
## 2. Find the zeroes of $$g(x)=-\dfrac{2}{5}x+\dfrac{5}{3}$$
<details> <summary> Example: </summary>
To find the zeroes of the function:
$$g(x)=-\dfrac{3}{4}x+\dfrac{7}{2}$$
Set $g(x)=0$:
$$0=-\dfrac{3}{4}x+\dfrac{7}{2}$$
Subtract $\dfrac{7}{2}$ from both sides:
$$-\dfrac{7}{2}=-\dfrac{3}{4}x$$
Multiply both sides by the reciprocal of $-\dfrac{3}{4}$, which is $-\dfrac{4}{3}$:
$$x=-\dfrac{7}{2}\times-\dfrac{4}{3}$$
Multiply the fractions:
$$x=\dfrac{28}{6}$$
Simplify:
$$x=\dfrac{14}{3}$$
Thus, the zero of the function is:
$$x=\dfrac{14}{3}$$
</details>
## 3. Find the zeroes of $$h(x)=-17$$
<details> <summary> Example: </summary>
To find the zeroes of the function:
$$
h(x) = 14
$$
Set $h(x) =$:
$$
0 = 14
$$
This is a contradiction, as 14 is never equal to 0. Therefore, the function $h(x) = 14$ has no zeroes.
Thus, the solution is:
$$
\text{No zeroes exist.}
$$
</details>
# Page 44
## 1. If $500 is invested in an account at an annual rate of 2% for 3 years, what is the final amount?
<details> <summary> Example: </summary>
To find the final amount using simple interest, we use the formula:
$$I=Prt$$
Where:
- $I$ is the interest.
- $P=300$ is the principal amount (initial investment).
- $r=0.06$ is the annual interest rate (6%).
- $t=8$ is the time in years.
Substitute the given values into the formula:
$$I=300\cdot0.06\cdot8$$
Simplify:
$$I=144$$
Now, to find the final amount $A$, add the interest to the principal:
$$A=P+I$$
$$A=300+144$$
Thus, the final amount is:
$$A=444$$
</details>
## 2. If $700 is invested in an account at an annual rate of 4% for 7 years, what is the final amount?
<details> <summary> Example: </summary>
To find the final amount using simple interest, we use the formula:
$$I=Prt$$
Where:
- $I$ is the interest.
- $P=800$ is the principal amount (initial investment).
- $r=0.05$ is the annual interest rate (5%).
- $t=6$ is the time in years.
Substitute the given values into the formula:
$$I=800\cdot0.05\cdot6$$
Simplify:
$$I=240$$
Now, to find the final amount $A$, add the interest to the principal:
$$A=P+I$$
$$A=800+240$$
Thus, the final amount is:
$$A=1040$$
</details>