# Page 41 ## 1. $$8-6x=13$$ <details> <summary> Example: </summary> $$ 5-7x=14 $$ Subtract 5 from both sides: $$ -7x=14-5 $$ Simplify: $$ -7x=9 $$ Divide both sides by -7: $$ x=\frac{9}{-7} $$ Simplify: $$ x=-\frac{9}{7} $$ </details> ## 2. $$9+3x=7-5x$$ <details> <summary> Example: </summary> $$ 7+2x=8-4x $$ Add 4x to both sides: $$ 7+2x+4x=8 $$ Simplify: $$ 7+6x=8 $$ Subtract 7 from both sides: $$ 6x=8-7 $$ Simplify: $$ 6x=1 $$ Divide both sides by 6: $$ x=\frac{1}{6} $$ </details> ## 3. $$4+3(2x-1)=14$$ <details> <summary> Example: </summary> $$ 5+2(3x-1)=16 $$ First, distribute the 2 on the left side: $$ 5+6x-2=16 $$ Simplify: $$ 3+6x=16 $$ Subtract 3 from both sides: $$ 6x=16-3 $$ Simplify: $$ 6x=13 $$ Divide both sides by 6: $$ x=\frac{13}{6} $$ </details> ## 4. $$3+2(x-1)=4+3(x+1)-x$$ <details> <summary> Example: </summary> To solve the equation: $$2+3(x-4)=5+4(x+3)-x$$ First, distribute on both sides: $$2+3x-12=5+4x+12-x$$ Simplify both sides: $$3x-10=4x+17-x$$ Combine like terms: $$3x-10=3x+17$$ Subtract $3x$ from both sides: $$-10=17$$ Since this is a contradiction, the equation has no solution. Thus, the solution is: $$\text{No solution}$$ </details> # Page 42 ## 1. $$3(y-2)+7=6(2y-2)$$ <details> <summary> Example: </summary> $$ 4(y-3)+6=5(3y-2) $$ First, distribute both sides: $$ 4y-12+6=15y-10 $$ Simplify: $$ 4y-6=15y-10 $$ Add 6 to both sides: $$ 4y=15y-4 $$ Subtract 15y from both sides: $$ 4y-15y=-4 $$ Simplify: $$ -11y=-4 $$ Divide both sides by -11: $$ y=\frac{-4}{-11} $$ Simplify: $$ y=\frac{4}{11} $$ </details> ## 2. $$2(2t-3)+4t=8t-6$$ <details> <summary> Example: </summary> $$ 3(4t-5)+2t=14t-15 $$ First, distribute the 3 on the left side: $$ 12t-15+2t=14t-15 $$ Combine like terms on the left side: $$ 14t-15=14t-15 $$ Since both sides are identical, this equation is true for all values of \( t \). Thus, the solution is: $$ t \in \mathbb{R} $$ Or simply: $$ \text{All real numbers.} $$ </details> ## 3. $$\dfrac{1}{2}x+5=\dfrac{1}{3}x-\dfrac{7}{2}$$ <details> <summary> Example: </summary> To solve the equation: $$\dfrac{1}{3}x+6=\dfrac{1}{4}x-\dfrac{9}{2}$$ First, move all the $x$ terms to the left side and constants to the right side. Subtract $\dfrac{1}{4}x$ from both sides: $$\dfrac{1}{3}x-\dfrac{1}{4}x+6=-\dfrac{9}{2}$$ Now, combine the $x$ terms. The common denominator for $\dfrac{1}{3}$ and $\dfrac{1}{4}$ is 12, so rewrite both fractions: $$\dfrac{4}{12}x-\dfrac{3}{12}x+6=-\dfrac{9}{2}$$ Simplify: $$\dfrac{1}{12}x+6=-\dfrac{9}{2}$$ Next, subtract 6 from both sides: $$\dfrac{1}{12}x=-\dfrac{9}{2}-6$$ Rewrite 6 as $\dfrac{12}{2}$: $$\dfrac{1}{12}x=-\dfrac{9}{2}-\dfrac{12}{2}$$ Simplify: $$\dfrac{1}{12}x=-\dfrac{21}{2}$$ Now, divide both sides by $\dfrac{1}{12}$, which is the same as multiplying by 12 (keep, change, flip): $$x=-\dfrac{21}{2} \times 12$$ Simplify: $$x=-\dfrac{252}{2}$$ $$x=-126$$ Thus, the solution is: $$x=-126$$ </details> # Page 43 ## 1. Find the zeroes of $$f(x)=\dfrac{5}{6}x+\dfrac{3}{4}$$ <details> <summary> Example: </summary> To find the zeroes of the function: $$ f(x)=\dfrac{4}{3}x+\dfrac{2}{5} $$ Set $f(x) = 0$: $$ 0 = \dfrac{4}{3}x + \dfrac{2}{5} $$ Subtract $\dfrac{2}{5}$ from both sides: $$ -\dfrac{2}{5} = \dfrac{4}{3}x $$ Multiply both sides by the reciprocal of $\dfrac{4}{3}$, which is $\dfrac{3}{4}$: $$ x = -\dfrac{2}{5} \times \dfrac{3}{4} $$ Multiply the fractions: $$ x = -\dfrac{6}{20} $$ Simplify: $$ x = -\dfrac{3}{10} $$ Thus, the zero of the function is: $$ x = -\dfrac{3}{10} $$ </details> ## 2. Find the zeroes of $$g(x)=-\dfrac{2}{5}x+\dfrac{5}{3}$$ <details> <summary> Example: </summary> To find the zeroes of the function: $$g(x)=-\dfrac{3}{4}x+\dfrac{7}{2}$$ Set $g(x)=0$: $$0=-\dfrac{3}{4}x+\dfrac{7}{2}$$ Subtract $\dfrac{7}{2}$ from both sides: $$-\dfrac{7}{2}=-\dfrac{3}{4}x$$ Multiply both sides by the reciprocal of $-\dfrac{3}{4}$, which is $-\dfrac{4}{3}$: $$x=-\dfrac{7}{2}\times-\dfrac{4}{3}$$ Multiply the fractions: $$x=\dfrac{28}{6}$$ Simplify: $$x=\dfrac{14}{3}$$ Thus, the zero of the function is: $$x=\dfrac{14}{3}$$ </details> ## 3. Find the zeroes of $$h(x)=-17$$ <details> <summary> Example: </summary> To find the zeroes of the function: $$ h(x) = 14 $$ Set $h(x) =$: $$ 0 = 14 $$ This is a contradiction, as 14 is never equal to 0. Therefore, the function $h(x) = 14$ has no zeroes. Thus, the solution is: $$ \text{No zeroes exist.} $$ </details> # Page 44 ## 1. If $500 is invested in an account at an annual rate of 2% for 3 years, what is the final amount? <details> <summary> Example: </summary> To find the final amount using simple interest, we use the formula: $$I=Prt$$ Where: - $I$ is the interest. - $P=300$ is the principal amount (initial investment). - $r=0.06$ is the annual interest rate (6%). - $t=8$ is the time in years. Substitute the given values into the formula: $$I=300\cdot0.06\cdot8$$ Simplify: $$I=144$$ Now, to find the final amount $A$, add the interest to the principal: $$A=P+I$$ $$A=300+144$$ Thus, the final amount is: $$A=444$$ </details> ## 2. If $700 is invested in an account at an annual rate of 4% for 7 years, what is the final amount? <details> <summary> Example: </summary> To find the final amount using simple interest, we use the formula: $$I=Prt$$ Where: - $I$ is the interest. - $P=800$ is the principal amount (initial investment). - $r=0.05$ is the annual interest rate (5%). - $t=6$ is the time in years. Substitute the given values into the formula: $$I=800\cdot0.05\cdot6$$ Simplify: $$I=240$$ Now, to find the final amount $A$, add the interest to the principal: $$A=P+I$$ $$A=800+240$$ Thus, the final amount is: $$A=1040$$ </details>