## 2.1 - Increasing, decreasing, piecewise functions ### Increasing function: ![image](https://hackmd.io/_uploads/SJnDFWoTC.png) * The graph rises from **left to right**. ![image](https://hackmd.io/_uploads/HyaOYWopA.png) - The value of $y$ is the thing that is _increasing_ from **left to right**. - Note $f(2) < f(5) < f(6)$. - Rule: if $a < b$, $f(a) < f(b)$. ### Decreasing Function: ![image](https://hackmd.io/_uploads/HJghKbiTR.png) * The graph falls from **left to right**. Decreasing function: ![image](https://hackmd.io/_uploads/BJkycZiaC.png) - The value of $y$ is the thing that is _decreasing_ from **left to right**. - Note $f(2) > f(3) > f(6)$. - Rule: if $a < b$, $f(a) > f(b)$. ### Sometimes increasing, sometimes decreasing: ![image](https://hackmd.io/_uploads/HyjrcWiaC.png) Increasing when green, decreasing when red: ![image](https://hackmd.io/_uploads/rJRDqWjaC.png) Note intervals of x when increasing or decreasing: ![image](https://hackmd.io/_uploads/BydtqZi6R.png) - Write: $f(x)$ is decreasing on intervals $(0, 2)$ and $(3, 4)$ - Write: $f(x)$ is increasing on intervals $(2, 3)$, $(4,\infty)$, and $(−\infty, 0)$. ### Example 1. Determine the intervals where the given function is increasing, and the intervals where it is decreasing. ![image](https://hackmd.io/_uploads/Sk4CcZopA.png) ![image](https://hackmd.io/_uploads/HyC_iWj60.png) The graph of $f(x)$ is increasing on intervals $(-\infty,-2)$, $(1,2)$, and $(5,\infty)$. The graph of $f(x)$ is decreasing on intervals $(-2,1)$ and $(2,5)$. ### Example 2. Determine the intervals where the given function is increasing, and the intervals where it is decreasing. ![image](https://hackmd.io/_uploads/S16AsZjpC.png) ![image](https://hackmd.io/_uploads/HJK7hWjp0.png) - The graph of $f(x)$ is increasing on the intervals $(2,3)$ and $(5,\infty)$. - The graph of $f(x)$ is decreasing on the intervals $(-\infty,2)$ and $(3,5)$. ### Constant Function. $f(x)$ is the same for all $x$: ![image](https://hackmd.io/_uploads/H1-P2Ws60.png) ### Sometimes increasing, sometimes decreasing, sometimes constant: ![image](https://hackmd.io/_uploads/H1e92bs6C.png) ![image](https://hackmd.io/_uploads/By2R3-oaC.png) - $f(x)$ is increasing on intervals $(-\infty,-2)$, $(2,3)$, and $(6,\infty)$. - $f(x)$ is decreasing on intervals $(0,2)$ and $(3,4)$. - $f(x)$ is constant on the intervals $(-2,0)$ and $(4,6)$. ## Relative (or local) maximum. ![image](https://hackmd.io/_uploads/rywxJzjTR.png) - Notice we are given $f(0) = 2.5$ and $f(3) = 1.7$. - The point $(0, 2.5)$ is higher than other nearby points on the graph (in purple). - The point $(3, 1.7)$ is higher than other nearby points on the graph (in orange). - Write: $f(x)$ has a **relative (or local) maximum** when $x = 0$. The ‘maximum value’ there is $y = 2.5$. - Write: $f(x)$ has a **relative (or local) maximum** when $x = 3$. The ‘maximum value’ there is $y = 1.7$. ## Relative (or local) minimum. ![image](https://hackmd.io/_uploads/ByGbyGo6A.png) - Notice we are given $f(2) = −1.5$ and $f(4) = −0.5$. - The point $(2, −1.5)$ is lower than other nearby points on the graph (in blue). - The point $(4, −0.5)$ is lower than other nearby points on the graph (in green). - Write: $f(x)$ has a **relative (or local) minimum** when $x = 2$. The ‘minimum value’ there is $y = −1.5$. - Write: $f(x)$ has a **relative (or local) minimum** when $x = 4$. The ‘minimum value’ there is $y = −0.5$. ### Example. In the graph below, determine the x values where $f(x)$ has a local (or relative) maximum. What is the maximum ($y$) value there? ![image](https://hackmd.io/_uploads/S1AIyfsaR.png) In the graph, determine the $x$ values where $f(x)$ has a local (or relative) minimum. What is the minimum ($y$) value there? ### Example. In the graph below, determine the x values where $f(x)$ has a local (or relative) maximum. What is the maximum ($y$) value there? ![image](https://hackmd.io/_uploads/SJEj1MiaR.png) In the graph, determine the $x$ values where $f(x)$ has a local (or relative) minimum. What is the minimum ($y$) value there? ## Piecewise functions - $f(x)$ is a piecewise function if it uses different formulas to calculate $f(x)$ depending on the value of x. $$f(x)=\begin{cases} 2x-5 & \quad \text{ if } x \leq 1 \\ x^2 \quad & \text{ if } 1 <x \leq 4 \\ 3x+1 & \quad \text{ if } x>4 \end{cases}$$ - If $x \leq 1$, use the $2x-5$ formula: $f(1)=2(1)-5=2-5=-3$ - If $1 <x \leq 4$, use the $x^2$ formula: $f(3)=3^2=9$ - If $x>4$, use the $3x+1$ formula: $f(5)=3(5)+1=15+1=16$ #### Steps: 1. **Identify which piece of the function to use**: - Check the value of $x$. - Choose the correct rule based on the range of $x$. 2. **Substitute the value of $x$ into the chosen rule**. 3. **Calculate the result**. #### Example Calculations: 1. $f(-1)$: - $-1\leq 1$, so use $2x-5$. - $f(-1)=2(-1)-5=-2-5=-7$. 2. $f(6)$: - $6>4$, so use $3x+1$. - $f(6)=3(6)+1=18+1=19$. 3. $f\left(\dfrac{1}{2}\right)$: - $\frac{1}{2}\leq 1$, so use $2x-5$. - $f\left(\dfrac{1}{2}\right)=2\left(\dfrac{1}{2}\right)-5=1-5=-4$. 4. $f(4)$: - $1<4\leq 4$, so use $x^2$. - $f(4)=4^2=16$. 5. $f\left(\dfrac{3}{4}\right)$: - $\frac{3}{4}\leq 1$, so use $2x-5$. - \begin{align}f\left(\dfrac{3}{4}\right)&=2\left(\dfrac{3}{4}\right)-5 \\&=\dfrac{6}{4}-5 \\&=\dfrac{6}{4}-\dfrac{20}{4} \\&=-\dfrac{14}{4} \\&=-\dfrac{7}{2}\end{align} 6. $f(-2)$: - $-2\leq 1$, so use $2x-5$. - $f(-2)=2(-2)-5=-4-5=-9$. 7. $f(0)$: - $0\leq 1$, so use $2x-5$. - $f(0)=2(0)-5=-5$. 8. $f(-3)$: - $-3\leq 1$, so use $2x-5$. - $f(-3)=2(-3)-5=-6-5=-11$. ### Example $$f(x)=\begin{cases} 3x-7 & x \leq 2 \\ 2x-2 & 2 <x \leq 5 \\ 2x^2 & x>5 \end{cases}$$ #### Example Calculations: 1. $f(4)$: - $2<4\leq 5$, so use $2x-2$. - $f(4)=2(4)-2=8-2=6$. 2. $f\left(\frac{3}{4}\right)$: - $\frac{3}{4}\leq 2$, so use $3x-7$. - \begin{align*} f\left(\frac{3}{4}\right) &= 3\left(\frac{3}{4}\right)-7 \\ &= \frac{9}{4}-7 \\ &= \frac{9}{4}-\frac{28}{4} \\ &= -\frac{19}{4}. \end{align*} 3. $f(-2)$: - $-2\leq 2$, so use $3x-7$. - $f(-2)=3(-2)-7=-6-7=-13$. 4. $f(0)$: - $0\leq 2$, so use $3x-7$. - $f(0)=3(0)-7=-7$. 5. $f(7)$: - $7>5$, so use $2x^2$. - $f(7)=2(7)^2=2(49)=98$. 6. $f\left(\frac{1}{2}\right)$: - $\frac{1}{2}\leq 2$, so use $3x-7$. - \begin{align*} f\left(\frac{1}{2}\right) &= 3\left(\frac{1}{2}\right)-7 \\ &= \frac{3}{2}-7 \\ &= \frac{3}{2}-\frac{14}{2} \\ &= -\frac{11}{2}. \end{align*} 7. $f(-5)$: - $-5\leq 2$, so use $3x-7$. - $f(-5)=3(-5)-7=-15-7=-22$.