# Page 45
## 1. $$3y-5<7y+9$$
<details> <summary> Example: </summary>
$$5y-4<3y+8$$
We will solve for $y$ step by step:
\begin{align}
5y - 4 &< 3y + 8 \\
5y - 3y &< 8 + 4 \\
2y &< 12 \\
y &< \frac{12}{2} \\
y &< 6
\end{align}
So, the solution is $y < 6$.
In interval notation this is the interval $(-\infty,6)$.
</details>
## 2. $$5(2y+1)+4 \geq 4(3y-3)-7$$
<details> <summary> Example: </summary>
We will solve for $y$ step by step:
\begin{align}
4(3y + 1) + 5 &\geq 3(2y - 2) - 6 \\
12y + 4 + 5 &\geq 6y - 6 - 6 \\
12y + 9 &\geq 6y - 12 \\
12y - 6y &\geq -12 - 9 \\
6y &\geq -21 \\
y &\geq \frac{-21}{6} \\
y &\geq -\frac{7}{2}
\end{align}
So, the solution is $y \geq -\frac{7}{2}$.
In interval notation this is the interval $\left[-\dfrac{7}{2},\infty\right)$.
</details>
## 3. Find the domain and put in interval notation: $g(x)=\sqrt{6-7x}$
<details> <summary> Example: </summary>
$g(x)=\sqrt{5-3x}$
For the square root to be defined, the expression inside the square root must be non-negative:
\begin{align}
5 - 3x &\geq 0 \\
-3x &\geq -5 \\
x &\leq \frac{5}{3}
\end{align}
So, the domain of $g(x)$ is all $x$ values such that $x \leq \frac{5}{3}$.
In interval notation, the domain is:
$$\left(-\infty, \frac{5}{3}\right]$$
</details>
## 4. Find the domain and put in interval notation: $h(x)=\dfrac{x-3}{\sqrt{2x+5}}$
<details> <summary> Example: </summary>
$h(x)=\dfrac{x-2}{\sqrt{8x+9}}$
The square root in the denominator requires the expression inside the square root to be positive. Therefore, we need:
\begin{align}
8x + 9 &> 0 \\
8x &> -9 \\
x &> -\frac{9}{8}
\end{align}
So, $x$ must be greater than $\frac{-9}{8}$ for the square root to be defined, and the denominator cannot be zero.
In interval notation, the domain of $h(x)$ is:
$$\left( -\frac{9}{8}, \infty \right)$$
</details>