# Page 45 ## 1. $$3y-5<7y+9$$ <details> <summary> Example: </summary> $$5y-4<3y+8$$ We will solve for $y$ step by step: \begin{align} 5y - 4 &< 3y + 8 \\ 5y - 3y &< 8 + 4 \\ 2y &< 12 \\ y &< \frac{12}{2} \\ y &< 6 \end{align} So, the solution is $y < 6$. In interval notation this is the interval $(-\infty,6)$. </details> ## 2. $$5(2y+1)+4 \geq 4(3y-3)-7$$ <details> <summary> Example: </summary> We will solve for $y$ step by step: \begin{align} 4(3y + 1) + 5 &\geq 3(2y - 2) - 6 \\ 12y + 4 + 5 &\geq 6y - 6 - 6 \\ 12y + 9 &\geq 6y - 12 \\ 12y - 6y &\geq -12 - 9 \\ 6y &\geq -21 \\ y &\geq \frac{-21}{6} \\ y &\geq -\frac{7}{2} \end{align} So, the solution is $y \geq -\frac{7}{2}$. In interval notation this is the interval $\left[-\dfrac{7}{2},\infty\right)$. </details> ## 3. Find the domain and put in interval notation: $g(x)=\sqrt{6-7x}$ <details> <summary> Example: </summary> $g(x)=\sqrt{5-3x}$ For the square root to be defined, the expression inside the square root must be non-negative: \begin{align} 5 - 3x &\geq 0 \\ -3x &\geq -5 \\ x &\leq \frac{5}{3} \end{align} So, the domain of $g(x)$ is all $x$ values such that $x \leq \frac{5}{3}$. In interval notation, the domain is: $$\left(-\infty, \frac{5}{3}\right]$$ </details> ## 4. Find the domain and put in interval notation: $h(x)=\dfrac{x-3}{\sqrt{2x+5}}$ <details> <summary> Example: </summary> $h(x)=\dfrac{x-2}{\sqrt{8x+9}}$ The square root in the denominator requires the expression inside the square root to be positive. Therefore, we need: \begin{align} 8x + 9 &> 0 \\ 8x &> -9 \\ x &> -\frac{9}{8} \end{align} So, $x$ must be greater than $\frac{-9}{8}$ for the square root to be defined, and the denominator cannot be zero. In interval notation, the domain of $h(x)$ is: $$\left( -\frac{9}{8}, \infty \right)$$ </details>