# RT-Thread 小記憶體動態管理
>使用此管理方式: `#defined RT_USING_HEAP && #defined RT_USING_SMALL_MEM`[color=#66BB6A]
- 與 memory heap 的做法類似,一開始是一塊大的記憶體,包含 header
- 分配記憶體時適當的切割
- 所有的記憶體塊透過 header 串起來,形成一個雙向鏈結

:::success
**File:** mem.c
:::
## 結構
```c
struct heap_mem
{
/* magic and used flag */
rt_uint16_t magic;
rt_uint16_t used;
rt_size_t next, prev;
#ifdef RT_USING_MEMTRACE
rt_uint8_t thread[4]; /* thread name */
#endif
};
```
- 此結構即為一個記憶體塊的 header
- 包含了
- magic 碼 `0x1ea0`
- 使用中標記
- 前一顆與下一顆
- 使用此記憶體的 thread 名稱(選)
---
## 初始化 heap
### `rt_system_heap_init`
| 功能 | 回傳值 |
| --- | ------ |
| 初始化 heap | void |
| `*begin_addr` | `*end_addr` |
| ------------- | ----------- |
| 記憶體起始位址 | 結束位址 |
```c=183
/**
* @ingroup SystemInit
*
* This function will initialize system heap memory.
*
* @param begin_addr the beginning address of system heap memory.
* @param end_addr the end address of system heap memory.
*/
void rt_system_heap_init(void *begin_addr, void *end_addr)
{
struct heap_mem *mem;
rt_uint32_t begin_align = RT_ALIGN((rt_uint32_t)begin_addr, RT_ALIGN_SIZE);
rt_uint32_t end_align = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_ALIGN_SIZE);
RT_DEBUG_NOT_IN_INTERRUPT;
```
- 向上對齊起始位址與向下對齊結束位址
```c=+
/* alignment addr */
if ((end_align > (2 * SIZEOF_STRUCT_MEM)) &&
((end_align - 2 * SIZEOF_STRUCT_MEM) >= begin_align))
{
/* calculate the aligned memory size */
mem_size_aligned = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM;
}
else
{
rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n",
(rt_uint32_t)begin_addr, (rt_uint32_t)end_addr);
return;
}
```
- 接著檢查起始與結束位址是否合法
- 如果合法,給定 `mem_size` 為結束位址 - 起始位址 - 2 倍的 `struct mem` 大小
- 也就是與 `mem_heap` 相同,一開始的記憶體設定為一大塊,頭與尾都要有一個 header
```c=+
/* point to begin address of heap */
heap_ptr = (rt_uint8_t *)begin_align;
RT_DEBUG_LOG(RT_DEBUG_MEM, ("mem init, heap begin address 0x%x, size %d\n",
(rt_uint32_t)heap_ptr, mem_size_aligned));
/* initialize the start of the heap */
mem = (struct heap_mem *)heap_ptr;
mem->magic = HEAP_MAGIC;
mem->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
mem->prev = 0;
mem->used = 0;
```
- 接著設定前面的 header:
- 設定 magic 碼
- 下一塊為結尾的 header
- 上一塊為自己
- 以及沒有使用過
```c=+
#ifdef RT_USING_MEMTRACE
rt_mem_setname(mem, "INIT");
#endif
/* initialize the end of the heap */
heap_end = (struct heap_mem *)&heap_ptr[mem->next];
heap_end->magic = HEAP_MAGIC;
heap_end->used = 1;
heap_end->next = mem_size_aligned + SIZEOF_STRUCT_MEM;
heap_end->prev = mem_size_aligned + SIZEOF_STRUCT_MEM;
#ifdef RT_USING_MEMTRACE
rt_mem_setname(heap_end, "INIT");
#endif
```
- 接著設定結尾的 header
- magic 碼
- 已被使用過
- 上一塊與下一塊指向自己
```c=+
rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO);
/* initialize the lowest-free pointer to the start of the heap */
lfree = (struct heap_mem *)heap_ptr;
}
```
- 最後初始化 semaphore
- 把這一塊掛上 `lfree`
---
## 分配記憶體
### `rt_malloc`
| 功能 | 回傳值 |
| --- | ------ |
| 要求記憶體 | 記憶體位址 |
| `size` |
| ------ |
| 欲要求的大小 |
```c=252
/**
* Allocate a block of memory with a minimum of 'size' bytes.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return pointer to allocated memory or NULL if no free memory was found.
*/
void *rt_malloc(rt_size_t size)
{
rt_size_t ptr, ptr2;
struct heap_mem *mem, *mem2;
if (size == 0)
return RT_NULL;
```
- 如果 `size` 為 0,回傳 NULL
```c=+
RT_DEBUG_NOT_IN_INTERRUPT;
if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d, but align to %d\n",
size, RT_ALIGN(size, RT_ALIGN_SIZE)));
else
RT_DEBUG_LOG(RT_DEBUG_MEM, ("malloc size %d\n", size));
/* alignment size */
size = RT_ALIGN(size, RT_ALIGN_SIZE);
if (size > mem_size_aligned)
{
RT_DEBUG_LOG(RT_DEBUG_MEM, ("no memory\n"));
return RT_NULL;
}
```
- 向上對齊 `size`,如果超過可用大小,回傳 NULL
```c=+
/* every data block must be at least MIN_SIZE_ALIGNED long */
if (size < MIN_SIZE_ALIGNED)
size = MIN_SIZE_ALIGNED;
```
- 如果小於 min size,設為 min size
```c=+
/* take memory semaphore */
rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
```
- 取得 semaphore
```c=+
for (ptr = (rt_uint8_t *)lfree - heap_ptr;
ptr < mem_size_aligned - size;
ptr = ((struct heap_mem *)&heap_ptr[ptr])->next)
{
mem = (struct heap_mem *)&heap_ptr[ptr];
```
:::info
這裡特別的說明一下 for 迴圈:
首先起點是 `lfree` - `heap_ptr`,這裡代表最左邊的 free block 與 heap 起點的距離。 我們把 `heap_ptr` 看成是一個 `rt_uint8_t` 的陣列,也就是一格一個 byte 的陣列。 再來把 `lfree` - `heap_ptr` 看成是差量 (offset),單位是 byte。 如此一來,`&heap_ptr[ptr]` 就會是 `lfree` 的起始位置了。
再來我們看 `next`,在初始化的時候,`next` 是指向 0,這個意思是下一顆在陣列的第 0 個,也就是自己;所以 `next` 存放的是下一顆的 index,而不是起始位置。
最後來看上界,理論上我們需要從 lfree 找到最後一顆,實際上如果最後幾顆不夠大的話是不需要檢查的,所以這裡上界設在 `mem_size_aligned` - `size` 的意思就是說如果最後幾顆的大小總和不夠大,我們可以略過。
:::
```c=+
if ((!mem->used) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
{
/* mem is not used and at least perfect fit is possible:
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
```
- first fit,如果找到第一顆可用的就進去
```c=+
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
(size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
{
```
- 又,如果這顆夠大到可以切割的話
```c=+
/* (in addition to the above, we test if another struct heap_mem (SIZEOF_STRUCT_MEM) containing
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
* -> split large block, create empty remainder,
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
* struct heap_mem would fit in but no data between mem2 and mem2->next
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory
*/
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
/* create mem2 struct */
mem2 = (struct heap_mem *)&heap_ptr[ptr2];
mem2->magic = HEAP_MAGIC;
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_mem_setname(mem2, " ");
#endif
```
- 設定下一顆的資料,同時把 `next` 與 `prev` 接到正確位置
```c=+
/* and insert it between mem and mem->next */
mem->next = ptr2;
mem->used = 1;
if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
}
```
- 接著把原本那塊的 `next` 指向新的那塊,設為使用中
- 如果新的那塊 `next` 不是最後一塊,設定 `prev`
```c=+
#ifdef RT_MEM_STATS
used_mem += (size + SIZEOF_STRUCT_MEM);
if (max_mem < used_mem)
max_mem = used_mem;
#endif
}
```
- 最後更新 `used_mem` 與 `max_mem`
```c=+
else
{
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
* take care of this).
* -> near fit or excact fit: do not split, no mem2 creation
* also can't move mem->next directly behind mem, since mem->next
* will always be used at this point!
*/
mem->used = 1;
#ifdef RT_MEM_STATS
used_mem += mem->next - ((rt_uint8_t *)mem - heap_ptr);
if (max_mem < used_mem)
max_mem = used_mem;
#endif
}
```
- 如果不可切割,只需設定使用中即可
```c=+
/* set memory block magic */
mem->magic = HEAP_MAGIC;
#ifdef RT_USING_MEMTRACE
if (rt_thread_self())
rt_mem_setname(mem, rt_thread_self()->name);
else
rt_mem_setname(mem, "NONE");
#endif
if (mem == lfree)
{
/* Find next free block after mem and update lowest free pointer */
while (lfree->used && lfree != heap_end)
lfree = (struct heap_mem *)&heap_ptr[lfree->next];
RT_ASSERT(((lfree == heap_end) || (!lfree->used)));
}
```
- 視情況更新 `lfree`
```c=+
rt_sem_release(&heap_sem);
RT_ASSERT((rt_uint32_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_uint32_t)heap_end);
RT_ASSERT((rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
RT_ASSERT((((rt_uint32_t)mem) & (RT_ALIGN_SIZE - 1)) == 0);
RT_DEBUG_LOG(RT_DEBUG_MEM,
("allocate memory at 0x%x, size: %d\n",
(rt_uint32_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
(rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr))));
RT_OBJECT_HOOK_CALL(rt_malloc_hook,
(((void *)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM)), size));
/* return the memory data except mem struct */
return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
}
}
```
- 還鎖,並回傳找到的記憶體位址
```c=+
rt_sem_release(&heap_sem);
return RT_NULL;
}
RTM_EXPORT(rt_malloc);
```
- 沒找到一樣還鎖,並回傳 NULL
---
### `rt_realloc`
| 功能 | 回傳值 |
| --- | ------ |
| 增長/縮減記憶體 | 記憶體位址 |
| `*rmeme` | `newsize` |
| -------- | --------- |
| 欲增長/縮減的記憶體位址 | 新的大小 |
```c=400
/**
* This function will change the previously allocated memory block.
*
* @param rmem pointer to memory allocated by rt_malloc
* @param newsize the required new size
*
* @return the changed memory block address
*/
void *rt_realloc(void *rmem, rt_size_t newsize)
{
rt_size_t size;
rt_size_t ptr, ptr2;
struct heap_mem *mem, *mem2;
void *nmem;
RT_DEBUG_NOT_IN_INTERRUPT;
/* alignment size */
newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
if (newsize > mem_size_aligned)
{
RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));
return RT_NULL;
}
else if (newsize == 0)
{
rt_free(rmem);
return RT_NULL;
}
```
- 向上對齊 size,如果:
- 大於可用大小,回傳 NULL
- 等於 0,free 記憶體,回傳 NULL
```c=+
/* allocate a new memory block */
if (rmem == RT_NULL)
return rt_malloc(newsize);
```
- 如原來的記憶體為空,直接 `malloc`,並回傳
```c=+
rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
(rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
{
/* illegal memory */
rt_sem_release(&heap_sem);
return rmem;
}
```
- 接著取得鎖,檢查傳入的記憶體是否合法
```c=+
mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
ptr = (rt_uint8_t *)mem - heap_ptr;
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
if (size == newsize)
{
/* the size is the same as */
rt_sem_release(&heap_sem);
return rmem;
}
```
- 找到記憶體塊的起始位址,算出 size,如果記憶體大小不需要變動,不做事,回傳原本的記憶體位址
```c=+
if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
{
/* split memory block */
#ifdef RT_MEM_STATS
used_mem -= (size - newsize);
#endif
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mem2 = (struct heap_mem *)&heap_ptr[ptr2];
mem2->magic = HEAP_MAGIC;
mem2->used = 0;
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_mem_setname(mem2, " ");
#endif
mem->next = ptr2;
if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
}
```
- 如果可以切割,與上面的動作相同
```c=+
plug_holes(mem2);
rt_sem_release(&heap_sem);
return rmem;
}
```
-使用 `plug_holes` 來合併 free block
- 還鎖,回傳更新後的記憶體位置
```c=+
rt_sem_release(&heap_sem);
/* expand memory */
nmem = rt_malloc(newsize);
if (nmem != RT_NULL) /* check memory */
{
rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
rt_free(rmem);
}
return nmem;
}
RTM_EXPORT(rt_realloc);
```
- 如果不可切割,或是需要增長,直接要一塊 new size,釋放原本的記憶體
- 最後回傳新的記憶體位址
---
#### `plug_holes`
| 功能 | 回傳值 |
| --- | ------ |
| 合併 free block | void |
| `*mem` |
| ------ |
| 欲合併的記憶體位址 |
```c=143
static void plug_holes(struct heap_mem *mem)
{
struct heap_mem *nmem;
struct heap_mem *pmem;
RT_ASSERT((rt_uint8_t *)mem >= heap_ptr);
RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)heap_end);
RT_ASSERT(mem->used == 0);
/* plug hole forward */
nmem = (struct heap_mem *)&heap_ptr[mem->next];
if (mem != nmem &&
nmem->used == 0 &&
(rt_uint8_t *)nmem != (rt_uint8_t *)heap_end)
{
/* if mem->next is unused and not end of heap_ptr,
* combine mem and mem->next
*/
if (lfree == nmem)
{
lfree = mem;
}
mem->next = nmem->next;
((struct heap_mem *)&heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - heap_ptr;
}
```
- 如果可以與下一顆合併
- 檢查是否需要更新 `lfree`
- 重新接上 `next` 與 `prev` (`next` 的 `prev`)
```c=+
/* plug hole backward */
pmem = (struct heap_mem *)&heap_ptr[mem->prev];
if (pmem != mem && pmem->used == 0)
{
/* if mem->prev is unused, combine mem and mem->prev */
if (lfree == mem)
{
lfree = pmem;
}
pmem->next = mem->next;
((struct heap_mem *)&heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - heap_ptr;
}
}
```
- 如果可以與上一顆合併,動作一樣
---
### `rt_calloc`
| 功能 | 回傳值 |
| --- | ------ |
| 要求一段連續的記憶體 | 記憶體位址 |
| `count` | `size` |
| ------- | ------ |
| 欲要求的數量 | 一塊的大小 |
```c=500
/**
* This function will contiguously allocate enough space for count objects
* that are size bytes of memory each and returns a pointer to the allocated
* memory.
*
* The allocated memory is filled with bytes of value zero.
*
* @param count number of objects to allocate
* @param size size of the objects to allocate
*
* @return pointer to allocated memory / NULL pointer if there is an error
*/
void *rt_calloc(rt_size_t count, rt_size_t size)
{
void *p;
/* allocate 'count' objects of size 'size' */
p = rt_malloc(count * size);
/* zero the memory */
if (p)
rt_memset(p, 0, count * size);
return p;
}
RTM_EXPORT(rt_calloc);
```
- 與 memheap 相同,一次要一塊 count 乘 size 的記憶體
- 清 0 並回傳起始位址
---
## 釋放記憶體
### `rt_free`
| 功能 | 回傳值 |
| --- | ------ |
| 釋放記憶體 | void |
| `*rmem` |
| -------- |
| 欲釋放的記憶體 |
```c=527
/**
* This function will release the previously allocated memory block by
* rt_malloc. The released memory block is taken back to system heap.
*
* @param rmem the address of memory which will be released
*/
void rt_free(void *rmem)
{
struct heap_mem *mem;
if (rmem == RT_NULL)
return;
```
- 如果需要釋放得記憶體為空,不做事
```c=+
RT_DEBUG_NOT_IN_INTERRUPT;
RT_ASSERT((((rt_uint32_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)heap_ptr &&
(rt_uint8_t *)rmem < (rt_uint8_t *)heap_end);
RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
(rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
{
RT_DEBUG_LOG(RT_DEBUG_MEM, ("illegal memory\n"));
return;
}
/* Get the corresponding struct heap_mem ... */
mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
```
- 檢查記憶體位址是否合法,並找到真正的記憶體區塊位址
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEM,
("release memory 0x%x, size: %d\n",
(rt_uint32_t)rmem,
(rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr))));
/* protect the heap from concurrent access */
rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
/* ... which has to be in a used state ... */
if (!mem->used || mem->magic != HEAP_MAGIC)
{
rt_kprintf("to free a bad data block:\n");
rt_kprintf("mem: 0x%08x, used flag: %d, magic code: 0x%04x\n", mem, mem->used, mem->magic);
}
RT_ASSERT(mem->used);
RT_ASSERT(mem->magic == HEAP_MAGIC);
```
- 要鎖,檢查是否是使用中的區塊,及是否屬於 heap
```c=+
/* ... and is now unused. */
mem->used = 0;
mem->magic = HEAP_MAGIC;
#ifdef RT_USING_MEMTRACE
rt_mem_setname(mem, " ");
#endif
if (mem < lfree)
{
/* the newly freed struct is now the lowest */
lfree = mem;
}
```
- 接著設為可使用,及更新 `lfree`
```c=+
#ifdef RT_MEM_STATS
used_mem -= (mem->next - ((rt_uint8_t *)mem - heap_ptr));
#endif
/* finally, see if prev or next are free also */
plug_holes(mem);
rt_sem_release(&heap_sem);
}
RTM_EXPORT(rt_free);
```
- 最後合併記憶體塊,並還鎖
###### tags: `RT-Thread` `Memory`