# RT-Thread Memory Heap
>使用此管理方式: `#define RT_USING_MEMHEAP_AS_HEAP` [color=#66BB6A]
- memheap 的管理方法(動態管理):
- 從 RAM 中要一塊記憶體
- 根據使用者需要的大小進行切割
- 剩下的以雙向鏈結的方式接起來,形成 free list
## 結構
:::success
**File:** rtdef.h
:::
```c=698
#ifdef RT_USING_MEMHEAP
/**
* memory item on the heap
*/
struct rt_memheap_item
{
rt_uint32_t magic; /**< magic number for memheap */
struct rt_memheap *pool_ptr; /**< point of pool */
struct rt_memheap_item *next; /**< next memheap item */
struct rt_memheap_item *prev; /**< prev memheap item */
struct rt_memheap_item *next_free; /**< next free memheap item */
struct rt_memheap_item *prev_free; /**< prev free memheap item */
};
/**
* Base structure of memory heap object
*/
struct rt_memheap
{
struct rt_object parent; /**< inherit from rt_object */
void *start_addr; /**< pool start address and size */
rt_uint32_t pool_size; /**< pool size */
rt_uint32_t available_size; /**< available size */
rt_uint32_t max_used_size; /**< maximum allocated size */
struct rt_memheap_item *block_list; /**< used block list */
struct rt_memheap_item *free_list; /**< free block list */
struct rt_memheap_item free_header; /**< free block list header */
struct rt_semaphore lock; /**< semaphore lock */
};
#endif
```
- `*start_addr` 指向可用的記憶體<br><br>
- `pool_size` 代表總共可用的大小
- `available_size` 目前可用的大小
- `max_used_size` 已使用的歷史中,最大的使用大小<br><br>
- `*block_list` 所有切割過的區塊(包含 header)<br><br>
- `*free_list` 目前所有可用的區塊
- `*free_list` 的第一顆<br><br>
- `lock` semaphore
---
:::success
**File:** memheap.c
:::
## 建立 memory heap
### `rt_system_heap_init`
| 功能 | 回傳值 |
| --- | ------ |
| 建立 memheap| void |
| `*begin_addr` | `*end_addr` |
| ------------- | ----------- |
| 起始位址(欲分配的) | 結束位址 |
```c=601
void rt_system_heap_init(void *begin_addr, void *end_addr)
{
/* initialize a default heap in the system */
rt_memheap_init(&_heap,
"heap",
begin_addr,
(rt_uint32_t)end_addr - (rt_uint32_t)begin_addr);
}
```
- 將起始位置,大小,結構體傳入 `rt_memheap_init`
---
### `rt_memheap_init`
| 功能 | 回傳值 |
| --- | ------ |
| 初始化 memheap| `RT_EOK` |
| `*memheap` | `*name` | `*start_addr` | `size` |
| ---------- | ------- | ------------- | ------ |
| memheap 結構 | 名字 | 欲分配的記憶體起始位址 | 記憶體大小 |
```c=39
/*
* The initialized memory pool will be:
* +-----------------------------------+--------------------------+
* | whole freed memory block | Used Memory Block Tailer |
* +-----------------------------------+--------------------------+
*
* block_list --> whole freed memory block
*
* The length of Used Memory Block Tailer is 0,
* which is prevents block merging across list
*/
rt_err_t rt_memheap_init(struct rt_memheap *memheap,
const char *name,
void *start_addr,
rt_uint32_t size)
{
struct rt_memheap_item *item;
RT_ASSERT(memheap != RT_NULL);
/* initialize pool object */
rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
memheap->start_addr = start_addr;
memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
memheap->max_used_size = memheap->pool_size - memheap->available_size;
```
- 首先填入 `start_addr`
- 向下對齊 `size`
- 設定可用大小為 `size` 減掉 2 個 header
- 設定最大已使用大小為目前已使用的大小(即 2 倍的 header)
```c=+
/* initialize the free list header */
item = &(memheap->free_header);
item->magic = RT_MEMHEAP_MAGIC;
item->pool_ptr = memheap;
item->next = RT_NULL;
item->prev = RT_NULL;
item->next_free = item;
item->prev_free = item;
```
- 先初始化 free list:
- 讓 item 指向 free list 的 header
- 設定 magic 碼
- 將 `pool_ptr` 指向 memheap 結構
- `next`、`prev` 指向 `NULL`
- `next_free`、`prev_free` 指向自己
```c=+
/* set the free list to free list header */
memheap->free_list = item;
```
- 給定 free list
```c=+
/* initialize the first big memory block */
item = (struct rt_memheap_item *)start_addr;
item->magic = RT_MEMHEAP_MAGIC;
item->pool_ptr = memheap;
item->next = RT_NULL;
item->prev = RT_NULL;
item->next_free = item;
item->prev_free = item;
```
- 接著將整個 pool 設定為一個可用的 block
- 讓 item 指向 起始位址
- 設定 magic 碼
- 將 `pool_ptr` 指向 memheap 結構
- `next`、`prev` 指向 `NULL`
- `next_free`、`prev_free` 指向自己
```c=+
item->next = (struct rt_memheap_item *)
((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
item->prev = item->next;
```
- 讓 next 與 prev 指到結尾的 header
```c=+
/* block list header */
memheap->block_list = item;
```
- 給定 block_list
```c=+
/* place the big memory block to free list */
item->next_free = memheap->free_list->next_free;
item->prev_free = memheap->free_list;
memheap->free_list->next_free->prev_free = item;
memheap->free_list->next_free = item;
```
- 將 free list (item) 的 `next` 指向 `memheap->free_list->next_free`,也就是 free list
- `prev` 同上
- 將 free list (heap) 的 `next` 指向 `item`
- `prev` 同上
```c=+
/* move to the end of memory pool to build a small tailer block,
* which prevents block merging
*/
item = item->next;
/* it's a used memory block */
item->magic = RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED;
item->pool_ptr = memheap;
item->next = (struct rt_memheap_item *)start_addr;
item->prev = (struct rt_memheap_item *)start_addr;
/* not in free list */
item->next_free = item->prev_free = RT_NULL;
```
- 設定尾巴的 header
- 讓 item 指向 free list 的 header
- 設定 magic 碼為**使用過**的
- 將 `pool_ptr` 指向 memheap 結構
- `next`、`prev` 指向起始位置
- `next_free`、`prev_free` 指向 `NULL`
```c=+
/* initialize semaphore lock */
rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_FIFO);
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("memory heap: start addr 0x%08x, size %d, free list header 0x%08x\n",
start_addr, size, &(memheap->free_header)));
return RT_EOK;
}
RTM_EXPORT(rt_memheap_init);
```
- 最後初始化 semaphore 並使用 FIFO
---
## 刪除 memory heap
### `rt_memheap_detach`
| 功能 | 回傳值 |
| --- | ------ |
| 刪除 memheap | `RT_EOK` |
| `*heap` |
| ------- |
| 欲刪除的 memheap |
```c=124
rt_err_t rt_memheap_detach(struct rt_memheap *heap)
{
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
RT_ASSERT(rt_object_is_systemobject(&heap->parent));
rt_object_detach(&(heap->lock.parent.parent));
rt_object_detach(&(heap->parent));
/* Return a successful completion. */
return RT_EOK;
}
RTM_EXPORT(rt_memheap_detach);
```
- 使用 `rt_object_detach` 刪除 semaphore 與 memheap
---
## 分配記憶體
### `rt_malloc`
| 功能 | 回傳值 |
| --- | ------ |
| 要求一塊記憶體 | 取得的記憶體 |
| `size` |
| ------ |
| 欲要求的大小 |
```c=610
void *rt_malloc(rt_size_t size)
{
void *ptr;
/* try to allocate in system heap */
ptr = rt_memheap_alloc(&_heap, size);
```
- 首先嘗試從系統的 heap(`_heap`)要求記憶體(透過 `rt_memheap_alloc`)
```c=+
if (ptr == RT_NULL)
{
struct rt_object *object;
struct rt_list_node *node;
struct rt_memheap *heap;
struct rt_object_information *information;
/* try to allocate on other memory heap */
information = rt_object_get_information(RT_Object_Class_MemHeap);
```
- 如果失敗,嘗試從其他的 heap 要求
```c=+
RT_ASSERT(information != RT_NULL);
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
heap = (struct rt_memheap *)object;
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
/* not allocate in the default system heap */
if (heap == &_heap)
continue;
```
- 跳過系統的 heap
```c=+
ptr = rt_memheap_alloc(heap, size);
if (ptr != RT_NULL)
break;
}
}
return ptr;
}
RTM_EXPORT(rt_malloc);
```
- 一樣透過 `rt_memheap_alloc` 來完成
- 如果成功就跳出迴圈,最後回傳記憶體位址
---
### `rt_memheap_alloc`
| 功能 | 回傳值 |
| --- | ------ |
| 要求一塊記憶體 | 取得的記憶體 |
| `*heap` | `size` |
| ------- | ------ |
| 目標 heap | 欲要求的大小 |
```c=138
void *rt_memheap_alloc(struct rt_memheap *heap, rt_uint32_t size)
{
rt_err_t result;
rt_uint32_t free_size;
struct rt_memheap_item *header_ptr;
RT_ASSERT(heap != RT_NULL);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
/* align allocated size */
size = RT_ALIGN(size, RT_ALIGN_SIZE);
if (size < RT_MEMHEAP_MINIALLOC)
size = RT_MEMHEAP_MINIALLOC;
```
- 首先向上對齊 `size`
- 如果小於 `RT_MEMHEAP_MINIALLOC` (12),設定為 `RT_MEMHEAP_MINIALLOC`
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s",
size, RT_NAME_MAX, heap->parent.name));
if (size < heap->available_size)
{
/* search on free list */
free_size = 0;
```
- 如果 heap 還夠使用,先將 `free_size` 設為 0
- `free_size` 代表我們目前找到的可用大小
```c=+
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
```
- 接著試著索取 semaphore
- 如果失敗,設定錯誤碼並回傳 NULL
```c=+
/* get the first free memory block */
header_ptr = heap->free_list->next_free;
while (header_ptr != heap->free_list && free_size < size)
{
/* get current freed memory block size */
free_size = MEMITEM_SIZE(header_ptr);
if (free_size < size)
{
/* move to next free memory block */
header_ptr = header_ptr->next_free;
}
}
```
- 接著從 free list 上一個一個找
- 使用 *first fit*,找到一個大魚的就退出迴圈
- `MEMITEM_SIZE(item)`:`((rt_uint32_t)item->next - (rt_uint32_t)item - RT_MEMHEAP_SIZE)`
- 利用下一顆的位址減掉自己的位址取的總體大小,再減掉 header 的大小
```c=+
/* determine if the memory is available. */
if (free_size >= size)
{
/* a block that satisfies the request has been found. */
/* determine if the block needs to be split. */
if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
{
struct rt_memheap_item *new_ptr;
/* split the block. */
new_ptr = (struct rt_memheap_item *)
(((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
```
- 如果有成功找到(不是因為走完迴圈才往下)
- 且這塊大到可以再切一塊,切割這塊:
- 從找到的那塊開始往後一個 `size` 與一個 `RT_MEMHEAP_SIZE` 作為新的 header
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n",
header_ptr,
header_ptr->next,
header_ptr->prev,
new_ptr));
/* mark the new block as a memory block and freed. */
new_ptr->magic = RT_MEMHEAP_MAGIC;
/* put the pool pointer into the new block. */
new_ptr->pool_ptr = heap;
```
- 設定 magic 碼
- 設定所屬 heap
```c=+
/* break down the block list */
new_ptr->prev = header_ptr;
new_ptr->next = header_ptr->next;
header_ptr->next->prev = new_ptr;
header_ptr->next = new_ptr;
```
- 將此 block 插入 `block_list`
```c=+
/* remove header ptr from free list */
header_ptr->next_free->prev_free = header_ptr->prev_free;
header_ptr->prev_free->next_free = header_ptr->next_free;
header_ptr->next_free = RT_NULL;
header_ptr->prev_free = RT_NULL;
```
- 從 free list 中移除找到的 block
```c=+
/* insert new_ptr to free list */
new_ptr->next_free = heap->free_list->next_free;
new_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = new_ptr;
heap->free_list->next_free = new_ptr;
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x\n",
new_ptr->next_free,
new_ptr->prev_free));
```
- 將分割好的 block 插入 free list
```c=+
/* decrement the available byte count. */
heap->available_size = heap->available_size -
size -
RT_MEMHEAP_SIZE;
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
}
```
- 更新 `available_size` 與 `max_used_size` (如果需要)
```c=+
else
{
/* decrement the entire free size from the available bytes count. */
heap->available_size = heap->available_size - free_size;
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
```
- 如果不能切割,一樣更新 `available_size` 與 `max_used_size` (如果需要)
```c=+
/* remove header_ptr from free list */
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x\n",
header_ptr,
header_ptr->next_free,
header_ptr->prev_free));
header_ptr->next_free->prev_free = header_ptr->prev_free;
header_ptr->prev_free->next_free = header_ptr->next_free;
header_ptr->next_free = RT_NULL;
header_ptr->prev_free = RT_NULL;
}
```
- 從 free list 中移除找到的 block
```c=+
/* Mark the allocated block as not available. */
header_ptr->magic |= RT_MEMHEAP_USED;
/* release lock */
rt_sem_release(&(heap->lock));
```
- 標記為使用中,釋放 semaphore
```c=+
/* Return a memory address to the caller. */
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("alloc mem: memory[0x%08x], heap[0x%08x], size: %d\n",
(void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
header_ptr,
size));
return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE);
}
```
- 最後回傳 block 記憶體位址 + header
- 即回傳可用的區塊
```c=+
/* release lock */
rt_sem_release(&(heap->lock));
}
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n"));
/* Return the completion status. */
return RT_NULL;
}
RTM_EXPORT(rt_memheap_alloc);
```
- 如果找失敗,一樣釋放 semaphore
- 不論是找失敗,或是記憶體不足,皆回傳 NULL
---
### `rt_realloc`
| 功能 | 回傳值 |
| --- | ------ |
| 重新要求記憶體(增長或縮減) | 新分配完的記憶體塊 |
| `*rmem` | `newsize` |
| ------- | --------- |
| 欲重新分配的記憶體 | 新的大小 |
```c=656
void *rt_realloc(void *rmem, rt_size_t newsize)
{
void *new_ptr;
struct rt_memheap_item *header_ptr;
if (rmem == RT_NULL)
return rt_malloc(newsize);
```
- 如果傳入的記憶體位置為空,直接 `rt_malloc(newsize)` 並回傳
```c=+
if (newsize == 0)
{
rt_free(rmem);
return RT_NULL;
}
```
- 如果 `newsize` 為 0,free 傳入的記憶體位置,回傳 NULL
```c=+
/* get old memory item */
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
```
- 取得傳入的記憶體塊所屬的 header
- malloc 時回傳的是可使用的起始位址,並不會包含 header,因此這裡減掉一個 header 的大小
```c=+
new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize);
```
- 透過 `rt_memheap_realloc` 來完成
```c=+
if (new_ptr == RT_NULL && newsize != 0)
{
/* allocate memory block from other memheap */
new_ptr = rt_malloc(newsize);
```
- 如果無法在原本的 heap 完成增長(或縮減),直接從別的 heap 要一塊 `newsize` 大的記憶體
```c=+
if (new_ptr != RT_NULL && rmem != RT_NULL)
{
rt_size_t oldsize;
/* get the size of old memory block */
oldsize = MEMITEM_SIZE(header_ptr);
if (newsize > oldsize)
rt_memcpy(new_ptr, rmem, oldsize);
else
rt_memcpy(new_ptr, rmem, newsize);
rt_free(rmem);
}
}
```
- 如果最後有要成功,復原原本的資料
```c=+
return new_ptr;
}
RTM_EXPORT(rt_realloc);
```
- 最後回傳新的記憶體位址
---
### `rt_memheap_realloc`
| 功能 | 回傳值 |
| --- | ------ |
| 重新要求記憶體(增長或縮減) | 新分配完的記憶體塊 |
| `heap` | `*ptr` | `newsize` |
| ------ | ------- | --------- |
| 目標 heap | 欲重新分配的記憶體 | 新的大小 |
```c=284
oid *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize)
{
rt_err_t result;
rt_size_t oldsize;
struct rt_memheap_item *header_ptr;
struct rt_memheap_item *new_ptr;
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
if (newsize == 0)
{
rt_memheap_free(ptr);
return RT_NULL;
}
```
- 如果 `newsize` 為 0,free 並回傳 NULL
```c=+
/* align allocated size */
newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
if (newsize < RT_MEMHEAP_MINIALLOC)
newsize = RT_MEMHEAP_MINIALLOC;
```
- 向上對齊 `newsize`
- 如果小於 `RT_MEMHEAP_MINIALLOC` (12),設定為 `RT_MEMHEAP_MINIALLOC`
```c=+
if (ptr == RT_NULL)
{
return rt_memheap_alloc(heap, newsize);
}
```
- 如果傳入的記憶體位置為空,直接 malloc newsize 的大小並回傳
```c=+
/* get memory block header and get the size of memory block */
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
oldsize = MEMITEM_SIZE(header_ptr);
```
- 取得傳入的 block 所屬的 header
- 一併計算這塊的大小
```c=+
/* re-allocate memory */
if (newsize > oldsize)
{
void *new_ptr;
struct rt_memheap_item *next_ptr;
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
```
- 如果需要增長記憶體,先取得 semaphore
```c=+
next_ptr = header_ptr->next;
/* header_ptr should not be the tail */
RT_ASSERT(next_ptr > header_ptr);
/* check whether the following free space is enough to expand */
if (!RT_MEMHEAP_IS_USED(next_ptr))
{
rt_int32_t nextsize;
nextsize = MEMITEM_SIZE(next_ptr);
RT_ASSERT(next_ptr > 0);
```
- 先判斷下一顆可不可用
```c=+
/* Here is the ASCII art of the situation that we can make use of
* the next free node without alloc/memcpy, |*| is the control
* block:
*
* oldsize free node
* |*|-----------|*|----------------------|*|
* newsize >= minialloc
* |*|----------------|*|-----------------|*|
*/
if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC)
{
/* decrement the entire free size from the available bytes count. */
heap->available_size = heap->available_size - (newsize - oldsize);
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
```
- 如果可用,而且下一顆足夠分割出一塊新的 block
- 更新 `available_size` 與 `max_used_size` (如果需要)
```c=+
/* remove next_ptr from free list */
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
next_ptr,
next_ptr->next_free,
next_ptr->prev_free));
next_ptr->next_free->prev_free = next_ptr->prev_free;
next_ptr->prev_free->next_free = next_ptr->next_free;
next_ptr->next->prev = next_ptr->prev;
next_ptr->prev->next = next_ptr->next;
```
- 從 free list 移除舊的下一顆
```c=+
/* build a new one on the right place */
next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize);
```
- 重新定指新的下一顆(傳入的起始位址加上 `newsize`)
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]",
next_ptr,
next_ptr->next,
next_ptr->prev));
/* mark the new block as a memory block and freed. */
next_ptr->magic = RT_MEMHEAP_MAGIC;
/* put the pool pointer into the new block. */
next_ptr->pool_ptr = heap;
```
- 設定 magic 碼
- 設定所屬 heap
```c=+
next_ptr->prev = header_ptr;
next_ptr->next = header_ptr->next;
header_ptr->next->prev = next_ptr;
header_ptr->next = next_ptr;
```
- 插入 block list
```c=+
/* insert next_ptr to free list */
next_ptr->next_free = heap->free_list->next_free;
next_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = next_ptr;
heap->free_list->next_free = next_ptr;
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x",
next_ptr->next_free,
next_ptr->prev_free));
```
插入 free list
```c=+
/* release lock */
rt_sem_release(&(heap->lock));
return ptr;
}
}
```
- 釋放 semaphore 並回傳更新後的記憶體位址
```c=+
/* release lock */
rt_sem_release(&(heap->lock));
/* re-allocate a memory block */
new_ptr = (void *)rt_memheap_alloc(heap, newsize);
if (new_ptr != RT_NULL)
{
rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize);
rt_memheap_free(ptr);
}
return new_ptr;
}
```
- 如果下一顆不夠大,重新在原本的 heap 上要一塊 `newsize` 大的記憶體
- 成功的話還原資料,並釋放原本的記憶體
- 回傳新的記憶體位址
```c=+
/* don't split when there is less than one node space left */
if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize)
return ptr;
```
- 如果是需要縮減,且縮減後剩下的大小不足以切成一塊
- 什麼事都不做,直接回傳原本的位址
```c=+
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
```
- 可以分割的話先取得 semaphore
```c=+
/* split the block. */
new_ptr = (struct rt_memheap_item *)
(((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE);
```
- 定址新的 block
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n",
header_ptr,
header_ptr->next,
header_ptr->prev,
new_ptr));
/* mark the new block as a memory block and freed. */
new_ptr->magic = RT_MEMHEAP_MAGIC;
/* put the pool pointer into the new block. */
new_ptr->pool_ptr = heap;
```
- 設定 magic 碼
- 設定所屬 heap
```c=+
/* break down the block list */
new_ptr->prev = header_ptr;
new_ptr->next = header_ptr->next;
header_ptr->next->prev = new_ptr;
header_ptr->next = new_ptr;
```
- 插入至 block list
```c=+
/* determine if the block can be merged with the next neighbor. */
if (!RT_MEMHEAP_IS_USED(new_ptr->next))
{
struct rt_memheap_item *free_ptr;
/* merge block with next neighbor. */
free_ptr = new_ptr->next;
heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr);
```
- 如果新的 block 下一顆未使用,即可合併
- 先將可用大小減掉下一顆的大小,待會會加回來
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n",
header_ptr, header_ptr->next_free, header_ptr->prev_free));
free_ptr->next->prev = new_ptr;
new_ptr->next = free_ptr->next;
```
- 從 block list 移除下一顆
```c=+
/* remove free ptr from free list */
free_ptr->next_free->prev_free = free_ptr->prev_free;
free_ptr->prev_free->next_free = free_ptr->next_free;
}
```
- 從 free list 移除下一顆,完成合併
```c=+
/* insert the split block to free list */
new_ptr->next_free = heap->free_list->next_free;
new_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = new_ptr;
heap->free_list->next_free = new_ptr;
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free ptr: next_free 0x%08x, prev_free 0x%08x\n",
new_ptr->next_free,
new_ptr->prev_free));
```
- 無論下一顆是否可以合併,都把新的 block 插入 free list
```c=+
/* increment the available byte count. */
heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr);
/* release lock */
rt_sem_release(&(heap->lock));
/* return the old memory block */
return ptr;
}
RTM_EXPORT(rt_memheap_realloc);
```
- 更新可用大小,並釋放 semaphore
- 回傳更新後的記憶體位址
---
### `rt_calloc`
| 功能 | 回傳值 |
| --- | ------ |
| 要求多個連續的記憶體 | 第一塊的位址 |
| `count` | `size` |
| ------- | ------ |
| 欲要求的數量 | 欲要求的大小 |
```c=698
void *rt_calloc(rt_size_t count, rt_size_t size)
{
void *ptr;
rt_size_t total_size;
total_size = count * size;
ptr = rt_malloc(total_size);
if (ptr != RT_NULL)
{
/* clean memory */
rt_memset(ptr, 0, total_size);
}
return ptr;
}
RTM_EXPORT(rt_calloc);
```
- 即要求一塊 `count * size` 大的記憶體
---
## 釋放記憶體
### `rt_free`
| 功能 | 回傳值 |
| --- | ------ |
| 釋放一塊記憶體 | void |
| `*rmem` |
| ------- |
| 欲釋放的記憶體 |
```c=650
void rt_free(void *rmem)
{
rt_memheap_free(rmem);
}
RTM_EXPORT(rt_free);
```
- 透過 `rt_memheap_free` 完成
---
### `rt_memheap_free`
| 功能 | 回傳值 |
| --- | ------ |
| 釋放一塊記憶體 | void |
| `*ptr` |
| ------- |
| 欲釋放的記憶體 |
```c=495
void rt_memheap_free(void *ptr)
{
rt_err_t result;
struct rt_memheap *heap;
struct rt_memheap_item *header_ptr, *new_ptr;
rt_uint32_t insert_header;
/* NULL check */
if (ptr == RT_NULL) return;
```
- 如果傳入 NULL,什麼事都不用做
- `return` 退出副程式
```c=+
/* set initial status as OK */
insert_header = 1;
new_ptr = RT_NULL;
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
```
- 初始化一些參數,並找到傳入的 block 所屬的 header
```c=+
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]\n",
ptr, header_ptr));
/* check magic */
RT_ASSERT((header_ptr->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
RT_ASSERT(header_ptr->magic & RT_MEMHEAP_USED);
/* check whether this block of memory has been over-written. */
RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
/* get pool ptr */
heap = header_ptr->pool_ptr;
```
- 定址 heap
```c=+
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return ;
}
```
- 先取得 semaphore
```c=+
/* Mark the memory as available. */
header_ptr->magic &= ~RT_MEMHEAP_USED;
/* Adjust the available number of bytes. */
heap->available_size = heap->available_size + MEMITEM_SIZE(header_ptr);
```
- 將使用中的標記清除,更新可用大小
```c=+
/* Determine if the block can be merged with the previous neighbor. */
if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
{
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x\n",
header_ptr->prev));
/* adjust the available number of bytes. */
heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
```
- 如果可以往前合併,更新可用大小(加一個 header 的大小)
```c=+
/* yes, merge block with previous neighbor. */
(header_ptr->prev)->next = header_ptr->next;
(header_ptr->next)->prev = header_ptr->prev;
```
- 從 block list 移除此 block
```c=+
/* move header pointer to previous. */
header_ptr = header_ptr->prev;
/* don't insert header to free list */
insert_header = 0;
}
```
- 重新定址 `header_ptr`
- 設定 `insert_header` 為 0,表示待會不需要將此 block 插回 free list(現在此 block 是與前一塊合併的,已經在 free list 上了)
```c=+
/* determine if the block can be merged with the next neighbor. */
if (!RT_MEMHEAP_IS_USED(header_ptr->next))
{
/* adjust the available number of bytes. */
heap->available_size = heap->available_size + RT_MEMHEAP_SIZE;
```
- 如果可以往前合併,更新可用大小(加一個 header 的大小)
```c=+
/* merge block with next neighbor. */
new_ptr = header_ptr->next;
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n",
new_ptr, new_ptr->next_free, new_ptr->prev_free));
new_ptr->next->prev = header_ptr;
header_ptr->next = new_ptr->next;
```
- 定址下一塊,並從 block list 移除下一塊
```c=+
/* remove new ptr from free list */
new_ptr->next_free->prev_free = new_ptr->prev_free;
new_ptr->prev_free->next_free = new_ptr->next_free;
}
```
- 一併從 free list 中移除
```c=+
if (insert_header)
{
/* no left merge, insert to free list */
header_ptr->next_free = heap->free_list->next_free;
header_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = header_ptr;
heap->free_list->next_free = header_ptr;
RT_DEBUG_LOG(RT_DEBUG_MEMHEAP,
("insert to free list: next_free 0x%08x, prev_free 0x%08x\n",
header_ptr->next_free, header_ptr->prev_free));
}
```
- 如果需要,插回 free list 上
```c=+
/* release lock */
rt_sem_release(&(heap->lock));
}
RTM_EXPORT(rt_memheap_free);
```
- 最後釋放 semaphore
###### tags: `RT-Thread` `kernel` `Memory` `Heap`