###### tags: `TAS` @mamy @theOnlyAlex @wlin @nlejeune @gnouf # TAS - TD 8 raphael.monat@lip6.fr $$E = v \to P(\mathbb{Z})$$ 1. $$ \mathbb{E}[[rand(a, b)]]: E \to P(\mathbb{Z}) \\ \mathbb{E}[[rand(a, b)]] \rho = \{ x | a \leq x \leq b\} $$ 2. $$ \mathbb{E}[[rand(0, 2) + 3 \times v]] \rho = \{ v_1 + v_2\ |\ v_1 \in \mathbb{E} [[rand(0, 2)]] \rho, v2 \in \mathbb{E} [[3 \times v]] \} \\ v_1 \in [0, 1, 2]\ \ \ ,\ \ v_2 \in [v_3 . v_4\ |\ v_3 \in \mathbb{E} [[3]]] \rho\ \ ,\ \ v_4 \in \mathbb{E} [[v]] \rho \\ = \{v_1 + v_2\ |\ v1 \in [0, 1, 2], v_2 = 3 \rho (v)\} \\ = \{3 \rho (v) ; 3 \rho (v) + 1; 3 \rho (v) + 2\} $$ 3. $$ 0 \to \{v \to 0\} \\ 1 \to \Bigg\{ \begin{pmatrix} v \to 0 \\ u \to 0 \end{pmatrix} \Bigg\} \\ 2 \to \Bigg\{ \begin{pmatrix} v \to 0 \\ a \to 0 \end{pmatrix} \begin{pmatrix} v \to 1 \\ a \to 0 \end{pmatrix} \Bigg\} \\ 3 \to \Bigg\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix} \Bigg\} \\ 4 \to \Bigg\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \Bigg\} $$ 4. $$ filter: t \to bool\_expr\ ent \to bool \to t \\ \mathbb{e} [[bexpr]] \\ \mathbb{c}[[bexpr]](R) = filter\ R\ bexpr\ true \\ \mathbb{C} [[\neg\ bexpr]](R) = filter\ R\ bexpr\ false \\ (a \leq 2)\ false $$ 5. $\ \ \ \mathbb{S} [[$``x = 2 * rand(0, 1); if(x == 0) { x = x+1; } else { x = x-1; }`` $]]\mathbb{R}$ = $\mathbb{S} [[$ ``if (x == 0) { x = x+1; } else { x = x-1; }`` $]] \big(\mathbb{S} [[$ ``x = 2 * rand(0, 1)`` $]] \mathbb{R} \big)$ = $\mathbb{S} [[$ ``x = x+1;`` $]] $\big( \mathbb{C} [[ ``x == 0`` ]] \mathbb{R}'\ \cup\ \mathbb{S} [[$ (à terminer)