--- tags: object --- # Geometric Deep Learning ## Papers - [Geometric Deep Learning](https://arxiv.org/pdf/2104.13478.pdf) - Bible Book - [website](https://geometricdeeplearning.com/) - [lecture recordings](https://geometricdeeplearning.com/lectures/) - [Thesis- E(2) - Equivariant Steerable CNNs](https://gabri95.github.io/Thesis/thesis.pdf) ## Resources for group theory - [Visual Group Theory Lecture](http://www.math.clemson.edu/~macaule/classes/m19_math4120/) - [Visual tools](https://nathancarter.github.io/group-explorer/GroupExplorer.html) - [Introduction to Group Theory with problem and solutions](https://mathdoctorbob.org/UReddit.html) ## People - [Taco Cohen](https://tacocohen.wordpress.com/) - papers in medical images - [Rotation Equivariant CNNs for Digital Pathology](https://arxiv.org/pdf/1806.03962.pdf) - [Pulmonary Nodule Detection in CT Scans with Equivariant CNNs](https://marysia.nl/assets/MIA.pdf) - [3D G-CNNs for Pulmonary Nodule Detection](https://arxiv.org/pdf/1804.04656.pdf) - [Max Welling](https://staff.fnwi.uva.nl/m.welling/) - Geometric deep learning - Application in biology, chemistry, physics, medical fields. ### talk Geometry is the study of invariants or symmetries, the properties that remain unchanged under some class of transformations (group). ![](https://i.imgur.com/gg6m7YK.png) This can be helpful in providing a constructive procedure to build neural network architectures in a principled way. ## Lecture 5 Graphs and Sets I ### permutation invariant and equivariant over set invariant: $f(\textbf{PX})=f(\textbf{X})$ $f(\textbf{X})=\phi(\oplus_{i\in V}\psi(\textbf{x}_i))$ $\oplus$ might be sum, max, average operators. Equivariant: $\textbf{F}(\textbf{PX})=\textbf{P}\textbf{F}(\textbf{X})$, $\textbf{F}$ takes a matrix as input and output an matrix. ### permutation invariant and equivariant over graph invariant: $f(\textbf{PX}, \textbf{PAP}^T)=f(\textbf{X})$ Equivariant: $\textbf{F}(\textbf{PX}, \textbf{PAP}^T)=\textbf{P}\textbf{F}(\textbf{X, A})$, $\textbf{F}$ takes a matrix as input and output an matrix. Prove: $convolutional\subseteq attentional\subseteq message$-$passing$. ### Transformers are GNN - fully connected graph GAT - Why are transformers sequence based? Because the positional embeddings are injected into features, i.e., the sin and cos tell you what position this node in the sequence. - If we drop those positional embeddings, you will have the same fully connected GAT.