--- title: 微積分(一) tags: 微積分(一), 共同筆記 --- [TOC] # 微積分(一) >原文書: >Calculus: Early Transcendentals (Metric Version) 9th edition >![](https://www.cengage.com/covers/imageServlet?productISBN13=9780357113516&image_type=LRGFC&catalog=cengage) >>Author: James Stewart, Daniel K. Clegg, Saleem Watson ## 教授相關資訊 - 教授的名字 : 高橋亮甫(a.k.a 楊劼之) - Office 數學系館 320 ## 考試日程及配分 - 考試日期 Mid. Exam I 2020-10-14 Mid. Exam II 2020-11-25 Final Exam 2021-01-06 - 配分 HW=30% MEI=20% MEII=20% FE=30% ## 教學內容 ### 9/9 #### Calculus = Differentiation + Integration Calculus is about functions. - Differentiation 微分 $\rightarrow$ 瞬間變化率 - Integration 積分 $\rightarrow$ 函式圖形下面積 #### Fundamental Theorem of Calculus Differentiation $\overset{反操作}\longleftrightarrow$ Integration i.e. $$ F \xrightarrow{differentiation} f \xrightarrow{Integration} F $$ #### Function *Definition* Let $X$, $Y$ be 2 sets. A function $f: X\rightarrow Y$ is a collection of pairs $(x,y) \in X\times Y$, denoted by $\Gamma(f)$ such that 1. For any $x\in X$, there's a $y$ such that $(x,y)\in\Gamma(f)$ 2. For any $(x,y)\in\Gamma(f)$ and $(x,y')\in\Gamma(f)$, we have that $y = y'$ *Examples* - $f(x) = x^2, \;f:\mathbb{R}\rightarrow\mathbb{R}$ is a fuction. - $f(x) = \frac{1}{x(x-1)}, \;f:\mathbb{R}-\{0,1\}\rightarrow \mathbb{R}$ is a function. - $f(x) = \sqrt{x}, \;f:\mathbb{R^+}\rightarrow\mathbb{R}$ is a function. - $f(x) = sin(x), \;f:R\rightarrow R$ is a function. #### Rational Function > A rational function $f$ is a ratio of two polynomials: > $$ > f(x) = \frac{P(x)}{Q(x)} > $$ > where $P$ and $Q$ are polynomials. The domain consists of all values of $x$ such that $Q(x) \neq 0$. > [name=Calculus: 7/e] :::warning 老師上課時講的是沒法被準確算出為Rational Function 上面是同作者書中7th edition的說法 ::: *Examples* - $f(x) = x^2, \;f:\mathbb{R}\rightarrow\mathbb{R}$ is a rational fuction. - $f(x) = \frac{1}{x(x-1)}, \;f:\mathbb{R}-\{0,1\}\rightarrow \mathbb{R}$ is a rational function. #### Irrational Function 相對於Rational Function *Examples* - $f(x) = \sqrt{x}, \;f:\mathbb{R^+}\rightarrow\mathbb{R}$ is irrational a function. - $f(x) = sin(x), \;f:R\rightarrow R$ is a irrational function. #### How to calculate $sin(x)$ ? *Step1* $$ \begin{aligned} sin(2x) &= 2sin(x)cos(x) \\ &= 2sin(x)(1-2sin^2(\frac{x}{2})) \\ &= 2(2sin(\frac{x}{2})cos(\frac{x}{2}))(1-2sin^2(\frac{x}{2})) \\ &= 2[2sin(\frac{x}{2})(1-2sin^2(\frac{x}{4}))](1-2sin^2(\frac{x}{2})) \\ &= ....... \end{aligned} $$ Value in $sin$ is getting smaller and smaller. *Step2* Let $X > 0$, $X$ is a small number. ![](https://i.imgur.com/ACeMdkh.png) We can see that $$ sin(x) < x \tag{1} $$ ![](https://i.imgur.com/659J1hR.png) Since two triangles are similar triangles (AA), we know that $$ \frac{r}{1} = \frac{sin(x)}{\sqrt{1-sin^2(x)}} $$ The area of the circular sector is $$ \frac{1^2x}{2} = \frac{x}{2} $$ and it should be less than the area of the triangle $\frac{r}{2}$, so we have $$ \begin{aligned} \frac{x}{2} &< \frac{r}{2} = \frac{sin(x)}{2\sqrt{1-sin^2(x)}} \\ &< \frac{sin(x)}{2\sqrt{1-x^2}} \\ &< \frac{sin(x)}{2(1-x^2)} \end{aligned} $$ $$ \begin{aligned} &\frac{x}{2} < \frac{sin(x)}{2(1-x^2)} \\ &\implies x < \frac{sin(x)}{1-x^2} \\ &\implies x-x^3 < sin(x) \end{aligned} \tag{2} $$ By combining (1) and (2) $$ x-x^3 < sin(x) < x $$ which infers that $sin(x) \approx x$ when $x$ is small. With this idea and the formula in step 1, we can estimate the value of $sin(x)$ by applying the formula to it, and when the variable of $sin$ gets small enough, replace it with the variable itself. #### Properties of functions $X,\;Y \subset R$ Let $f: \;X \rightarrow Y$ be a function. *Injective function* (1對1) If $f(x) \neq f(x')$ for all $x \neq x'$, we say $f$ is injective (one to one). *Surjective function* (映成) For any $y \in Y$, there exists $x \in X$ such that $f(x) = y$, we say that $f$ is surjective. *Bijective function* If $f$ in injective and surjective, we say that $f$ is bijective (one-to-one). *Inverse function* For any bijective function $f: \;X \rightarrow Y$, there exists an inverse function $f^{-1}: \;Y \rightarrow X$, such that $$ (f \circ f^{-1}): \;Y \rightarrow Y \\ (f \circ f^{-1})(y) = y \\ (f^{-1} \circ f): \;X \rightarrow X \\ (f^{-1} \circ f)(x) = x $$ ### 9/11 #### Rational Function *Definition* $$ \frac{P(x)}{Q(x)}, \;where \;P,Q \;are \;polynomials, \; Q(x) \neq 0 $$ #### Irrational Function Examples: $sin(x)$, $\sqrt{x}$, $\log x$, $a^x \;(a>0)$ #### How to solve $a^x$ `TODO` #### Interval notation Let $a, \;b$ be 2 real numbers, $a<b$, we define that $$ (a,b) = \{x \in \mathbb{R} \mid a\lt x\lt b\} \;\text{(open interval)} \\ [a,b] = \{x \in \mathbb{R} \mid a\le x \le b\} \;\text{(close interval)} \\ (a,b] = \{x \in \mathbb{R} \mid a\lt x\le b\} \\ [a, b) = \{x \in \mathbb{R} \mid a\le x \lt b\} $$ #### Neighborhood *Definition* Let $a \in \mathbb{R}$, a neighborhood of a is $(a-c,a+c)$ for some $c \gt 0$ ![](https://i.imgur.com/GOKIdGf.png) > The limit of a point is decided by its neighborhood. #### Limit of a function *Explanation* *(nbd.=neighborhood)* Let$f:\mathbb{R} \to\mathbb{R}$ be a function, we call $\lim\limits_{x\to a}f(x)=L\iff$For any small nbd. of $L$, $f(x)$ is in this nbd. if $x$ is in another small nbd. of $a(x\ne a)$ *Q:為什麼$x\ne a$?* *師說:驗證某人是否為好人,可訪問其本人及鄰居,但本人給出的評價必定有所偏頗,故此採樣不計入統計數據。* *Definition* Let $f(x)$ be a function, $a\in\mathbb{R}$, $\lim\limits_{x\to a}f(x)=L\iff$For any $\varepsilon > 0$, there exists a $\delta > 0$, such that $\overset{\text{f(x) is in a small nbd. of L}}{|f(x)-L| < \varepsilon}$ *i.e. $f(x)\in(L-\varepsilon, L+\varepsilon)$*, when $\overset{\text{x is in a small nbd. of a}}{0<|x-a|<\delta}$ *i.e. $x\in(a-\delta, a+\delta)$*, :::info $\varepsilon$: Epsilon $\delta$: Delta ::: ### 9/16 #### Examples of limit 1. $\lim\limits_{x \to 5}1 = 1$ ***analysis*** We have to find a $\delta \gt 0$ such that for every $\varepsilon \gt 0$, $|1-1| \lt \varepsilon$ when $0 \lt |x-5| \lt \delta$ It is clear that we can choose any number greater than 0 as $\delta$ because $|1-1| \lt \varepsilon$ is always true. ***proof*** Given $\varepsilon > 0$, choose $\delta = 1$. If $0 \lt |x-5| \lt \delta$, then $$ |1-1| = 0 \lt \varepsilon $$ Thus, if $0 \lt |x-5| \lt \delta$ then $|1-1| < \varepsilon$ Therefore, by the definition of a limit, $$ \lim\limits_{x \to 5}1 = 1 $$ 2. $\lim\limits_{x \to 3}x = 3$ ***analysis*** We have to find a $\delta \gt 0$ such that for every $\varepsilon \gt 0$, $|x-3| \lt \varepsilon$ when $0 \lt |x-3| \lt \delta$ This suggest that we can choose $\delta = \varepsilon$ so that $$ |x-3| \lt \delta = \varepsilon $$ is true. ***proof*** Given $\varepsilon > 0$, choose $\delta = \varepsilon$. If $0 \lt |x - 3| \lt \delta$, then $$ |x - 3| < \delta = \varepsilon $$ Thus, if $0 \lt |x - 3| \lt \delta$ then $|x - 3| \lt \varepsilon$ Therefore, by the definition of a limit, $$ \lim\limits_{x \to 3}x = 3 $$ 3. $\lim\limits_{x \to 2}(3x^2+1) = 13$ ***analysis*** We have to find a $\delta \gt 0$ such that for every $\varepsilon \gt 0$, $|3x^2+1-13| \lt \varepsilon$ when $0 \lt |x-2| \lt \delta$ We know that $$ \begin{aligned} |3x^2+1-13| &= |3x^2-12| \\ &= 3|x^2-4| \\ &= 3|x+2||x-2| \end{aligned} $$ Therefore, we want a $\delta$ such that $3|x-2||x+2| \lt \varepsilon$ when $0 \lt |x-2| \lt \delta$ Since we only care about x values that are close to 2, we can assume that x is within a distance 1 from 2, that is, $|x-2| \lt 1$. So $1 \lt x \lt 3$, then $3 \lt x+2 \lt 5$ And we can further say that $$ 3|x+2||x-2| \lt 15|x-2| $$ So we can make $15|x-2| \lt \varepsilon$ by taking $|x-2| \lt \dfrac{\varepsilon}{15}$, and choose $\delta = \dfrac{\varepsilon}{15}$ But remember that $|x-2|$ now has 2 restrictions: $|x-2| \lt 1$ and $|x-2| \lt \dfrac{\varepsilon}{15}$ In order to satisfy both of the inequalities, we choose $\delta = min\left\{1, \dfrac{\varepsilon}{15}\right\}$ ***proof*** Given $\varepsilon$, choose $\delta = min\left\{1, \dfrac{\varepsilon}{15}\right\}$ If $0 \lt |x-2| \lt \delta$, then $|x-2| \lt 1\implies 1 \lt x \lt 3\implies |x+2| < 5$ so $$ \begin{aligned} |3x^2+1-13| &= |3x^2-12| \\ &= 3|x^2-4| \\ &= 3|x+2||x-2| \\ &\lt 15\delta \\ &\lt 15\left(\dfrac{\varepsilon}{15}\right) = \varepsilon \end{aligned} $$ Thus, $|3x^2+1-13| \lt \varepsilon$ when $0 \lt |x-2| \lt \delta$ Therefore, by the definition of a limit $$ \lim\limits_{x \to 2}(3x^2+1) = 13 $$ #### Basic rules of Limit Let $\lim\limits_{x \to a}f(x) = L$, $\lim\limits_{x \to a}g(x) = M$, $c \in \mathbb{R}$, then 1. $\lim\limits_{x \to a}(f(x)+g(x)) = L+M$ 2. $\lim\limits_{x \to a}cf(x) = cL$ 3. $\lim\limits_{x \to a}(f(x)g(x)) = LM$ 4. $\lim\limits_{x \to a}\dfrac{f(x)}{g(x)} = \dfrac{L}{M}, \;M \neq 0$