--- title: 普通物理學(一) tags: 普通物理學(一), 共同筆記 --- # 普通物理學(一) >原文書:University Physics with modern physics 15th ed >![](https://scontent-tpe1-1.xx.fbcdn.net/v/t1.15752-0/p280x280/119022159_257054122032458_2836944551034599331_n.png?_nc_cat=109&_nc_sid=b96e70&_nc_ohc=jR0NIK_UiU0AX_C0_eS&_nc_ht=scontent-tpe1-1.xx&oh=cf0f0567fa6a403eabe5a822c61f9ac0&oe=5F7D8F08) >>Author: Hugh D. Young , Roger A. Freedman >>Publisher: 高立圖書/普林斯頓國際有限公司南方業務部 >>Phone: 0932-083861 >>Telephone: 06-3111301 >>Mail: ethan@gau-lih.com.tw >>Line-ID: gan0932083861 ## 教授相關資訊 - 教授的名字 : 田興龍 - Office_hour Tue. 12:00~13:00 - Email sltyan@mail.ncku.edu.tw - Office 理學教學大樓 6F 36652 ## 考試日程及配分 - 考試日期 Mid. Exam I 2020-10-19 Mid. Exam II 2020-11-23 Final Exam 2021-01-04 - 配分 HW=10% >late HW receive a 50% reduction in grade MEI=20% MEII=30% FE=40% ## 教學內容: 1. $Mathematics$ 1. $Derivatives$(微分) (1) $Secant$(割線) $\Delta x \equiv x_f-x$ $\Delta y \equiv y_f-y$ $\Delta: \;Difference$ $Geometry : slope :\frac{\Delta y}{\Delta x}$ -2020/9/7 (2) $Tangent$(切線) $\Delta x_\downarrow\to0\Rightarrow dx$ $B \;approaches\; to\; A$ $dx$ : $infinitesimal$(無窮小) $\Delta x\rightarrow0 : two\;seperated\;points$ $\quad\Rightarrow one\;point$ $\Rightarrow\;discontinuous\;\rightarrow\;continuous$ $\frac{dy}{dx}\equiv\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}$ $\Rightarrow\frac{dy}{dx}:\;slope \;of \;point\;A$ $if \;x\rightarrow\;time\;t\Rightarrow concept\; of\;instantaneous\;value\;of\;time\;t$ $\frac{dy}{dx}=f(x)\Rightarrow dy = f(x)dx$ >實際上可把微分符號直接移項 (3) $Properties$(運算性質) $\quad$(a) $Sum \frac{d}{dx}(f(x)+g(x))=\frac{df}{dx}+\frac{dg}{dx}$ $\quad \quad EX:3x^2+sin(x)\quad\frac{d}{dx}\Rightarrow6x+cos(x)$ $\quad$(b) $Product:\frac{d}{dx}[f(x)*g(x)]$ $\quad\quad=\frac{df}{dx}g(x)+\frac{dg}{dx}f(x)$ $\quad\quad EX:\frac{d}{dx}(x^2*cos(x))=2x*cos(x)+x^2*(-sin(x))$ $\quad$($c$)$Quotient:\frac{d}{dx}[\frac{f(x)}{g(x)}]$ $\quad\quad \frac{df}{dx}*\frac{1}{g}+f\;\frac{d}{dx}(\frac{1}{g})$ $\quad$(d) $chain\;rule$ $\quad\quad f=f(u),u=u(x)$ $\quad \frac{df}{dx}=\frac{df}{du}*\frac{du}{dx}$ $\quad\quad EX:\frac{d}{dt}(sin(wt))=cos(wt)*w$ $\quad\quad EX:\frac{d}{dx}(sin(x^2))=cos(x^2)*2x$ $\quad$(e) $2nd\;deriviative$ $\quad\quad\frac{d}{dx}(\frac{dy}{dx})=\frac{d^2y}{dx^2}\quad EX:y=ax^3\quad a=c^+\quad\frac{d^2y}{dx^2}=6ax$ 2. $Integrals$(積分) $\quad\quad Objective:\;Area\;between\;x_1\;and\;x_2$ $\quad\quad N\;divisions\;in\;[x_1,x_2]\;width\;\Delta x$ $\quad\quad \sum_{i=0}^n\;f(xi)\Delta x\approx Area\;between [x_1,x_2](\approx:discontinous)$ $\quad\quad Now\;N\rightarrow\infty ,\Delta x\rightarrow0\Rightarrow dx\Rightarrow continuous$ $\quad\quad then\;\sum\rightarrow\int ,f(xi)\rightarrow f(x)$ $\quad\quad \lim_{\Delta x \to 0} \sum f(xi)\Delta x\equiv\int_{x1}^{x2}f(x)dx=A(x)|^{x2}_{x1}=A(x_2)-A(x_1)$ >$Note:\;A(x) = \int f(x)dx$ -2020/9/9 3. $Exponentials$ & $Natural\;logarithm$ $\quad\quad Euler:e\equiv\frac{\lim}{n\rightarrow\infty}(1+\frac{1}{n})\sim2.718$ $\quad\quad Exponential\;funtion(指數):e^x\equiv exp(x)$ $\quad\quad \frac{d}{dx}(e^x)=e^x$ $\quad\quad Natural\;logarithm(對數):ln$ $\quad\quad ln(exp(x))=x$ $\quad\quad \frac{d}{dx}(lm\;x):\frac{1}{x}$ >$Note:\int\frac{1}{x}dx=ln(x)$ 4. $Trangonometry$ $\quad\quad sin(\alpha\pm\beta)=sin(\alpha)cos(\beta)\pm sin(\beta)cos(\alpha)$ $\quad\quad cos(\alpha\pm\beta)=cos(\alpha)cos(\beta)\mp sin(\alpha)sin(\beta)$ $\quad\quad cos^2(\theta)=\frac{1+cos(2\theta)}{2}$ $\quad\quad sin^2(\theta)=\frac{1-cos(2\theta)}{2}$ 5. $Vector\;algebra$ $\quad\quad$(1)$Dot:$ $\quad\quad meaning:Projection$ $\quad\quad\vec A*\vec B =|\vec A||\vec B|cos(\theta)$ $\quad\quad$(2)$Cross:$ $\quad\quad Right-hand\;screw\;rule(direction)$ $\quad\quad meaning:Area$ $\quad\quad constructed\;by\;\vec A$&$\vec B$ 6. $Approximations$ $\quad\quad For|x|<<1$ $\quad\quad e^x \sim 1+x$ $\quad\quad sin(x)\sim x$ $\quad\quad ln(1+x)\sim x$ $\quad\quad(1+x)^p \sim 1+px$ #### Review 1. $why\;\vec V,\vec a,\vec p?\;enegry?\;work?$ $\vec F\frac{\rightarrow}{\Delta 無窮小} enegry$ 2. $Newton's\;law$ 3. $Work-enegry\;Theorem$ $\quad W_{net}=\int_i^f \vec{F} \cdot \mathrm{d} \vec{r}=\int_i^f F_{x} \mathrm{d} x+\int_i^f F_{y} \mathrm{d} y+\int_i^f F_{z} \mathrm{d} z$ $\quad\quad(\text In\;one-dimensional\; space)$ $\quad\quad W_{net}=\int_i^f F\cdot \mathrm{d} x=\int_i^f F\cdot \mathrm{d} x=$ $$ \begin{aligned} &\int_i^f (ma)\cdot \mathrm{d} x \\ = &\int m\frac{\mathrm{d}v_x}{\mathrm{d}t}\mathrm{d}x \\ = &\int m\frac{\mathrm{d}x}{\mathrm{d}t}\mathrm{d}v_x \\ = &\int_{v_i}^{v_f} mv_x \;\mathrm{d}v_x \\ = &\frac{1}{2}m{v_x}^2\big|_{v_i}^{v_f} \\ = &\frac{1}{2}m{v_f}^2 - \frac{1}{2}m{v_i}^2 \end{aligned} $$ 4. $Potential\;Enegry$ ![](https://i.imgur.com/YUZvGI1.png) $\quad\quad \because v=c^+ \therefore \Delta K=0=W_{net}$ $\quad\quad \because \Delta x \ne 0 \therefore \vec{F}_{net}=0$ $\quad\quad \vec{F}_{net}=\vec{F}_{ext}+\vec{F}_{g}=0$ $\quad\quad W_{net}=\int_i^f \vec{F}_{net} \cdot \mathrm{d \vec{r_y}}=0$ $\quad\quad W_{ext}=int_i^f \vec{f}_{ext} \cdot \mathrm{d} \vec{r_y}>0$ $\quad\quad Q:\text Where\;is\;this\;energy\;?$ $\quad\quad A:\text We\;say\;it\;stored\;as\;potential\;energy\;,U\;.$ $\quad \quad \quad \;\;W_{ext}=\int_i^f \vec{F}_{ext} \cdot \mathrm{d} \vec{r_y}\equiv U_f-U_i\equiv\Delta U$ $\quad\quad\quad \;\;\because W_{net}+W_g=0\;,\;\therefore W_g=-W_{ext}=-\Delta U$ $\quad\quad\quad\;\;\Longrightarrow \int_i^f \vec{F}_{ext} \cdot \mathrm{d} \vec{r}\;=\;-\Delta U"$ $\quad\quad\quad\;\; \text保守力作功之目的在於"減少""位能"$ $\quad\quad\quad\;\;(低能是穩定狀態)$ $\quad\quad\quad\;\;*\;\;\;\;\;\vec{F}_g\;:\text a\;kind\;of\;conservative\;force$ $\quad\quad\quad\;\;\;\;\;\;"-"\;:\text work\;done\;by\;con.force\;leads\;to\;a\;decrease\;in\;U$ 5. $Conservative\;Force$ ![](https://i.imgur.com/MhecHvc.png) $\;\;Definition\;:\oint \vec{F}_{con.}\cdot \mathrm{d} \vec{r}=0$ $\;\;\oint \vec{F}_{con.} \cdot \mathrm{d} \vec{r}=\int_{A,1}^B \vec{F}_c\cdot\mathrm{d}\vec{r}+\int_{B,2}^A\vec{F}_c\cdot\mathrm{d}\vec{r}=\int_{A,1}^B\vec{F}_c\cdot\mathrm{d}\vec{r}-\int_{A,2}^B\vec{F}_c\cdot\mathrm{d}\vec{r}=0$ $\;\;\Longrightarrow\int_{A,1}^B\vec{F}_c\cdot\mathrm{d}\vec{r}=\int_{A,2}^B\vec{F}_c\cdot\mathrm{d}\vec{r}$ $\;\;\Longrightarrow\text 起/終點相同的情況下,不論路徑,保守力所作之功皆相同$ $\;\;\;\;\;\;\;\;\;\text Work\;done\;by\;the\;con.force\;is\;independent\;of\;the\;path.$ $\;\;\;\;\;\;\;\;\;\text 在保守力場中,力學能守恆$ 6. $Mechanical\;enegry$ $\;\color{red}{if\;\vec{F}_{net}=\vec{F}_{con.}\;"only"\;!!}$ $\;\Delta U=-(\int\vec{F}_{con.}\cdot\mathrm{d}\vec{r})$ $\;\;\;\;\;\;\;\;=-(\int\vec{F}_{net}\cdot\mathrm{d}\vec{r})$ $\;\;\;\;\;\;\;\;=-(\Delta K)$ $\;\Longrightarrow\Delta U+\Delta K=0\;\;\equiv\;\;\Delta (U+K)=0$ $\;\;\;\;\;\;\;\;E=U+K\;,\color{red}{if\;\Delta E=0\;\;\land\;\;E=C^+},we\;call\;the\;mechanical\;energy\;conservative.$ 7. $Potential\;Enegry \xrightarrow{?} \vec F_{con}$ $\int\vec{F}_{con.}\cdot\mathrm{d}\vec{r}=-\Delta U=-\int\mathrm{d} U$ $\;\Longrightarrow\vec{F}_{con.}\cdot\mathrm{d}\vec{r}=F_{con.\;r}\cdot\mathrm{d}r=-\mathrm{d}U$ $\;\Longrightarrow\color{red}{F_{con.\;r}={-\mathrm{d}U \over \;\mathrm{d}r}}$ $\;\;\;\;\color{green}{ex.}$ $\;\;\color{green}{|}\;\;\;\;Elastic\;P.E.$ $\;\;\color{green}{|}\;\;\;\;已知\;\;U(X)={1 \over 2}kx^2\;\;,求\;\;F(x)=\;\;?$ $\;\;\color{green}{|}\;\;\;\;\Longrightarrow\;\;F(x)={-\mathrm{d} U \over \;\mathrm{d}x}={{-\mathrm{d}({1 \over 2}kx^2)} \over \;\mathrm{d}x}=-kx$ 8. $Enegry\;conservation\;with\;dissipative\;force(散逸力)$ $W_{net}=\color{red}{(}W_{con.}\color{red}{)}+W_{non-con.}=\Delta K$ $\quad\quad\;=\color{red}{(}-\Delta U\color{red}{)}+W_{non-con.}$ $\Longrightarrow W_{non-con.}=\Delta U+\Delta K=\Delta E \Longrightarrow\color{green}{cf.\;\;5.\;Conservative\;Force}$ > 園中花化為灰 > 夕陽一點已西墜 > 相思淚心已碎 > 空聞馬蹄歸 > 秋日殘紅螢火飛 > [name=秦少游] [維基百科-秦少游](https://zh.wikipedia.org/zh-tw/%E7%A7%A6%E8%A7%82) # CH8.5 Center of mass (CM) $\;*Translated\;motion\;(平移運動)\;of\;CM\;is\;characteristic\\ \;\;\;of\;the\;system\;as\;a\;whole$ $1.Types:\\\;\;(1)Two\;particles:$ ![](https://i.imgur.com/n63gYS9.png) $\;\;\;\;\;\;\;\;X_{CM}={m_1x_1+m_2x_2 \over m_1+m_2}$ $\;\;\;(2)Many\;particles:\\\;\;\;\;\;\;\vec{r}_{CM}$ ## 名言 >永遠不要相信在台上講話的人 >[name=田興龍] >不能表達自己意見的,都是被宰割的一群 >[name=田興龍] ## 2020/9/7 Mon. >Moodle:https://drive.google.com/file/d/1dIVi_UMTRI58FlImSACMmUyfHm6B72GR/view?usp=sharing ## 2020/9/9 Wed. >Moodle:https://drive.google.com/file/d/12zyrPj9vytJyr9oRbyKE-0BzTOIXWnmF/view?usp=sharing ## 2020/9/14 Mon. >Moodle:https://drive.google.com/file/d/1M8kk85BpXPx5tyci_fcnzHebNqCcE36w/view?usp=sharing