###### tags: `ntust` `Math` `note` `ntust` # Linear Algebra :::info 值得一覽: 1. [講義](https://web.ntnu.edu.tw/~40247038S/Linear%20Algebra/) 2. [影片](https://www.youtube.com/watch?v=csgNflj69-Y&list=PLybg94GvOJ9En46TNCXL2n6SiqRc_iMB8&index=1&ab_channel=ProfessorDaveExplains) ::: # Matrices ans Systems of Equations ## 1.1 System of Linear Equations ### [**linear equation(線性方程式)**](https://zh.wikipedia.org/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84) - A linear in n unknows is an equation of the form $$ a_1x_1+a_2x_2+...+a_nx_n = b $$ - where $a_1,a_2,...a_n$ and $b$ are real numbers and $x_1,x_2,...x_n$ are variables. A linear system of m equations in unknows is then a system of the form. $$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$ $$a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$$ $$. $$ $$. $$ $$. $$ $$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$$ --- ### **Linear Systems(線性系統)** 1. <font color = red>**Unique Solution**(有唯一解的恰定方程組)</font> - Intersection Lines(兩條線交於一點) ![](https://i.imgur.com/jvKCiXq.png) 2. <font color = red>**No solution**(解不存在的超定方程組)</font> * Parallel Lines(兩條線平行) ![](https://i.imgur.com/MNO1wZ6.png) 3. <font color = red>**Infinite Solution** or **coincide** (有無窮多解的欠定方程組(也被通俗地稱為不定方程組))</font> * Same Line(兩條線重合) ![](https://i.imgur.com/OrsiVa5.png) --- ### **Equivalent Systems(等價系統)** - <font color = #0000FF>Two systems of equations involving the same variables are said to be **eqivalent** if they have the same set.</font> >如果兩個 linear system 具有相同數目的未知數,並且有相同的解(必須是一樣的集合)。那我們說這兩個 system Equivalent(相等)。 --- ### **Strict Triangular Form(嚴格三角方陣)** - <font color = #0000FF>A system is said to be in stict triangle form if, in the kth eqution, the coeffcients of the first $k-1$ variables are all zero and the coefficient of $x_K$ is nozereo (k=1,...,n).</font> >如果在一個 system 中,第 k 個等式的前 k - 1 個變數的係數都是 0,而第 k 個變數的係數不為 0。那就稱這個形式為 strict triangular form。 ![](https://i.imgur.com/2P9WUuu.png) --- ### **Augmented matrix(增廣矩陣)** - 將原本的 + , x, = 等符號省略, 只留係數在方陣中 - 必須以相同的順序放置常數 ![](https://i.imgur.com/M9Hx4u0.png) --- ### **Elementary Row Operations(基本列運算)** 以下三種計算方式不會影響到 system 本身的解。所有藉由這個方式衍生的 system 都跟原來的 system equivalent。 1. 將兩列(等式)互相交換 2. 將某一列(等式)乘上一個常數 3. 將某列(等式)替換為自己與另一列(等式)的總合 - 這三種方法通常是用來取得 **strict triangular form** 而使用的 ![](https://i.ytimg.com/vi/DH2JSYx52nk/maxresdefault.jpg) --- ## 1.2 [Row Echelon Form(階梯形矩陣)](https://zh.wikipedia.org/wiki/%E9%98%B6%E6%A2%AF%E5%BD%A2%E7%9F%A9%E9%98%B5) A matrix is said to be row echelon form if 1. The first nozero entry in each nonzero row is 1. 2. If row $k$ does not consist entirely of zeros, the number of leading zero entires in row $k+1$ is greater than the number of leading zero enrties in row $k$. 3. If there are rows whose entries are all zero, they are below the rows having nonzero entries. >- 線性代數中,一個矩陣如果符合下列條件的話,我們稱之為**列階梯形矩陣**或列**梯形式矩陣**(英語:Row Echelon Form): > 1. 所有非零列(矩陣的列至少有一個非零元素)在所有全零列的上面。即全零列都在矩陣的底部。 > 2. 非零列的首項係數(leading coefficient),也稱作軸元(pivot或pivot element),即最左邊的首個非零元素,嚴格地比上面列的首項係數更靠右(某些版本會要求非零列的首項係數必須是1)。 > 3. 首項係數所在行,在該首項係數下面的元素都是零(前兩條的推論)。 --- ### [Overdetermined Systems](超定系統) - **Overdetermined** 就是指等式的數目比未知數還要多的 system,通常這種情況下會是無解(但也有可能有解)。 --- ### [Underdetermined Systems](欠定方程) - **Underdetermined** 就是指等式的數目比未知數還要少的 system,通常這種情況下會有無限多組解(也有可能無解),但是不可能只有一組解。 --- ### [Reduced Row Echelon Form(簡化列階梯形矩陣)](https://zh.wikipedia.org/wiki/%E9%98%B6%E6%A2%AF%E5%BD%A2%E7%9F%A9%E9%98%B5) - A matrix is in row echelon form if 1. The matrix is in row echelon form. 2. The forst nonzero entry in each row is **the only nonzero entry in its column**. --- ### Homogeneous Systems(齊次系統) - **Homogeneous** systems are always **consistent** - Homogeneous systems **at least one solution**. --- > ![](https://i.imgur.com/oGSJVzO.png) --- > ![](https://i.imgur.com/AhUeJOO.png) --- > ![](https://i.imgur.com/IGHvwtY.png) --- > ![](https://i.imgur.com/i2JCL8v.png) --- > ![](https://i.imgur.com/EZA65wb.png) --- - [video](https://www.youtube.com/watch?v=JlJWyWJARRU&ab_channel=patrickJMT) --- ## 1.3 [Matrix Arithmetic(矩陣運算)](https://online.stat.psu.edu/statprogram/reviews/matrix-algebra/arithmetic) ::: spoiler `Matrix Notation` $$ \left[\begin{matrix} a_{11}&a_{12}&_{...}&a_{1n}\\ a_{21}&a_{22}&_{...}&a_{2n}\\ _{...}\\ a_{m1}&a_{m2}&_{...}&a_{mn} \end{matrix}\right] $$ --- - [video](https://www.youtube.com/watch?v=y6bVhgmy2rw&ab_channel=ProfessorDaveExplains) ::: ::: spoiler `Vectors` - [連結](https://zh.wikipedia.org/wiki/%E8%A1%8C%E5%90%91%E9%87%8F%E8%88%87%E5%88%97%E5%90%91%E9%87%8F) ::: :::spoiler `Equality` - Tow $m*n$ matrices $A$ and $B$ are said to be equal if $a_{ij} = b_{ij}$ for each $i$ and $j$. ::: :::spoiler `Sclar Multiplication` - [連結](https://zh.wikipedia.org/wiki/%E6%A0%87%E9%87%8F%E4%B9%98%E6%B3%95) - If $A$ is an $m*n$ matrix and $\alpha$ is a ascalar, then $\alpha a$ is the $m*n$ matrix whose$(i,j)$ entry is $\alpha a_{ij}$. ::: --- ### Matrix addition -